NEARLY MORITA EQUIVALENCES AND RIGID OBJECTS

被引:2
作者
Marsh, Robert J. [1 ]
Palu, Yann [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] LAMFA, Fac Sci, 33,Rue St Leu, F-80039 Amiens 1, France
基金
英国工程与自然科学研究理事会;
关键词
TRIANGULATED CATEGORIES; CLUSTER CATEGORIES; MODULE CATEGORIES; ALGEBRAS;
D O I
10.1017/nmj.2016.27
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If T and T' are two cluster-tilting objects of an acyclic cluster category related by a mutation, their endomorphism algebras are nearly Morita equivalent (Buan et al., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(1) (2007), 323-332 (electronic)); that is, their module categories are equivalent "up to a simple module". This result has been generalized by Yang, using a result of Plamondon, to any simple mutation of maximal rigid objects in a 2-Calabi-Yau triangulated category. In this paper, we investigate the more general case of any mutation of a (non-necessarily maximal) rigid object in a triangulated category with a Serre functor. In that setup, the endomorphism algebras might not be nearly Morita equivalent, and we obtain a weaker property that we call pseudo-Morita equivalence. Inspired by Buan and Marsh , we also describe our result in terms of localizations.
引用
收藏
页码:64 / 99
页数:36
相关论文
共 26 条
  • [1] ON THE STRUCTURE OF TRIANGULATED CATEGORIES WITH FINITELY MANY INDECOMPOSABLES
    Amiot, Claire
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2007, 135 (03): : 435 - 474
  • [2] CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2 AND QUIVERS WITH POTENTIAL
    Amiot, Claire
    [J]. ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) : 2525 - 2590
  • [3] The Grothendieck group of a cluster category
    Barot, M.
    Kussin, D.
    Lenzing, H.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) : 33 - 46
  • [4] Rigid objects, triangulated subfactors and abelian localizations
    Beligiannis, Apostolos
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 841 - 883
  • [5] Buan AB, 2007, T AM MATH SOC, V359, P323
  • [6] Tilting theory and cluster combinatorics
    Buan, Aslak Bakke
    Marsh, Bethany Rose
    Reineke, Markus
    Reiten, Idun
    Todorov, Gordana
    [J]. ADVANCES IN MATHEMATICS, 2006, 204 (02) : 572 - 618
  • [7] Buan AB, 2013, T AM MATH SOC, V365, P2845
  • [8] From triangulated categories to module categories via localization II: calculus of fractions
    Buan, Aslak Bakke
    Marsh, Bethany R.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 152 - 170
  • [9] Cluster structures from 2-Calabi-Yau categories with loops
    Buan, Aslak Bakke
    Marsh, Robert J.
    Vatne, Dagfinn F.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (04) : 951 - 970
  • [10] Cluster tilting for one-dimensional hypersurface singularities
    Burban, Igor
    Iyama, Osamu
    Keller, Bernhard
    Reiten, Idun
    [J]. ADVANCES IN MATHEMATICS, 2008, 217 (06) : 2443 - 2484