Gradient estimates for a class of parabolic systems

被引:393
作者
Acerbi, Emilio [1 ]
Mingione, Giuseppe [1 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
关键词
D O I
10.1215/S0012-7094-07-13623-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish local Calderon-Zygmund-type estimates for a class of parabolic problems whose model is the nonhomogeneous, degenerate/singular parabolic p-Laplacian system u(t) - div(\Du\(p-2)Du) = div(\F\Fp-2), proving that F is an element of L-loc(q) double right arrow Du is an element of L-loc(q), for all q >= p. We also treat systems with discontinuous coefficients of vanishing mean oscillation (VMO) type.
引用
收藏
页码:285 / 320
页数:36
相关论文
共 25 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[3]   W(P)(1,2) SOLVABILITY FOR THE CAUCHY-DIRICHLET PROBLEM FOR PARABOLIC EQUATIONS WITH VMO COEFFICIENTS [J].
BRAMANTI, M ;
CERUTTI, MC .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1735-1763
[4]   Parabolic equations with BMO coefficients in Lipschitz domains [J].
Byun, SS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (02) :229-265
[5]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[6]   W2,P-SOLVABILITY OF THE DIRICHLET PROBLEM FOR NONDIVERGENCE ELLIPTIC-EQUATIONS WITH VMO COEFFICIENTS [J].
CHIARENZA, F ;
FRASCA, M ;
LONGO, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :841-853
[7]   Holder continuity of local minimizers [J].
Cupini, G ;
Fusco, N ;
Petti, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (02) :578-597
[8]   ON THE HIGHER INTEGRABILITY OF THE GRADIENT OF WEAK SOLUTIONS OF CERTAIN DEGENERATE ELLIPTIC-SYSTEMS [J].
DIBENEDETTO, E ;
MANFREDI, J .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (05) :1107-1134
[9]  
DIBENEDETTO E, 1985, J REINE ANGEW MATH, V357, P1
[10]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2