Toward pTesla Detectivities Maintaining Minimum Sensor Footprint With Vertical Packaging of Spin Valves

被引:5
作者
Silva, Marilia [1 ,2 ]
Leitao, Diana C. [1 ,2 ]
Cardoso, Susana [1 ,2 ]
Freitas, Paulo P. [1 ]
机构
[1] INESC Microsistemas & Nanotecnol, P-1000029 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Magnetic field detection; noise level; series and parallel connection; spin valve (SV); vertical packaging; NOISE;
D O I
10.1109/TMAG.2016.2634021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The reduction of the noise level of magnetoresistive (MR) micrometric sensors is often achieved by increasing the sensor area and/or connecting MR elements in large arrays. This paper introduces an innovative strategy to increase the sensing area without increasing the area occupied by the MR sensors on a wafer, therefore minimizing the sensor footprint. Here, the idea is to deposit vertically spin-valve (SV) films, separated by an insulator. This packed structure is then incorporated into arrays, connected in parallel and series, as a general noise reduction strategy. Using calculations, the number of SVs vertically packed (Z), combined in series (X elements) and parallel (Y elements) was investigated, so that the optimum geometry, which minimizes the field detectivity, can be obtained. The magnetic field detection of SV sensors in the thermal noise limit can be improved from 39 pT/Hz(1/2) for Z = 1 with a total number of 500 SVs (distributed in plane) to 12 pT/Hz(1/2) for Z = 10 with a total number of 5000 SVs. Besides, the device footprint is also demonstrated to decrease from 0.7 mm(2) (Z = 1) to 0.07 mm(2) (Z = 10). These limits of detection are competitive with single SV sensors using magnetic flux concentrators, with the advantage of a high spatial resolution with fewer fabrication steps (at least three).
引用
收藏
页数:5
相关论文
共 14 条
[1]   Small Magnetic Sensors for Space Applications [J].
Diaz-Michelena, Marina .
SENSORS, 2009, 9 (04) :2271-2288
[2]   Current density limitations of spin valves [J].
Gafron, TJ ;
Burkett, SL ;
Russek, SE .
IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (05) :2611-2613
[3]  
Gaster RS, 2011, NAT NANOTECHNOL, V6, P314, DOI [10.1038/nnano.2011.45, 10.1038/NNANO.2011.45]
[4]   Ion beam deposition of Mn-Ir spin valves [J].
Gehanno, V ;
Freitas, PP ;
Veloso, A ;
Ferreira, J ;
Almeida, B ;
Sousa, JB ;
Kling, A ;
Soares, JC ;
da Silva, MF .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) :4361-4367
[5]   Improving magnetic field detection limits of spin valve sensors using magnetic flux guide concentrators [J].
Guedes, A. ;
Almeida, J. M. ;
Cardoso, S. ;
Ferreira, R. ;
Freitas, P. P. .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) :2376-2378
[6]   Low frequency noise in arrays of magnetic tunnel junctions connected in series and parallel [J].
Guerrero, R. ;
Pannetier-Lecoeur, M. ;
Fermon, C. ;
Cardoso, S. ;
Ferreira, R. ;
Freitas, P. P. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[7]   Low-frequency magnetic and resistance noise in magnetic tunnel junctions [J].
Jiang, L ;
Nowak, ER ;
Scott, PE ;
Johnson, J ;
Slaughter, JM ;
Sun, JJ ;
Dave, RW .
PHYSICAL REVIEW B, 2004, 69 (05)
[8]   Review of Noise Sources in Magnetic Tunnel Junction Sensors [J].
Lei, Z. Q. ;
Li, G. J. ;
Egelhoff, William F., Jr. ;
Lai, P. T. ;
Pong, Philip W. T. .
IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (03) :602-612
[9]   Magnetocardiography with sensors based on giant magnetoresistance [J].
Pannetier-Lecoeur, M. ;
Parkkonen, L. ;
Sergeeva-Chollet, N. ;
Polovy, H. ;
Fermon, C. ;
Fowley, C. .
APPLIED PHYSICS LETTERS, 2011, 98 (15)
[10]   Room temperature direct detection of low frequency magnetic fields in the 100 pT/Hz0.5 range using large arrays of magnetic tunnel junctions [J].
Paz, E. ;
Serrano-Guisan, S. ;
Ferreira, R. ;
Freitas, P. P. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)