Perturbations from symmetric elliptic boundary value problems

被引:45
作者
Li, SJ [1 ]
Liu, ZL
机构
[1] Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
perturbation; symmetry; elliptic boundary value problems; multiple solutions;
D O I
10.1006/jdeq.2001.4160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Multiplicity Of Solutions for the elliptic problem -Deltau = f(x,u) + eg(x,u) in Omega and u = 0 on partial derivativeOmega, where epsilon is a parameter, Omega is a smooth bounded domain in R-N, f is an element of C((Ω) over bar x R), f(x, t) is odd with respect to t, and y is an element of C((Ω) over bar x R). Under suitable conditions only on f, we prove that for any j is an element of N there exists epsilon(j) > 0 such that if \epsilon\ less than or equal to epsilon(j) then the above problem possesses at least j distinct solutions. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:271 / 280
页数:10
相关论文
共 8 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[3]   VARIATIONAL ELLIPTIC PROBLEMS WHICH ARE NONQUADRATIC AT INFINITY [J].
COSTA, DG ;
MAGALHAES, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (11) :1401-1412
[4]   Perturbations of nonsmooth symmetric nonlinear eigenvalue problems [J].
Degiovanni, M ;
Radulescu, V .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04) :281-286
[5]  
Degiovanni M., 1995, DIFFERENTIAL INTEGRA, V8, P981
[6]  
LI SJ, MULTIPLICITY SOLUTIO
[7]  
Rabinowitz P. H., 1985, CBMS, V65
[8]   Nonlinear boundary value problems with concave nonlinearities near the origin [J].
Wang, ZQ .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (01) :15-33