Multi-resolution CSI Feedback with Deep Learning in Massive MIMO System

被引:123
|
作者
Lu, Zhilin [1 ]
Wang, Jintao [1 ]
Song, Jian [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Massive MIMO; CSI feedback; deep learning; convolutional neural network; inception network;
D O I
10.1109/icc40277.2020.9149229
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In massive multiple-input multiple-output (MIMO) system, user equipment (UE) needs to send downlink channel state information (CSI) back to base station (BS). However, the feedback becomes expensive with the growing complexity of CSI in massive MIMO system. Recently, deep learning (DL) approaches are used to improve the reconstruction efficiency of CSI feedback. In this paper, a novel feedback network named CRNet is proposed to achieve better performance via extracting CSI features on multiple resolutions. An advanced training scheme that further boosts the network performance is also introduced. Simulation results show that the proposed CRNet outperforms the state-of-the-art CsiNet under the same computational complexity without any extra information. The open source codes are available at https://github.com/Kylin9511/CRNet
引用
收藏
页数:6
相关论文
共 50 条
  • [21] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [22] Downlink CSI Feedback Algorithm With Deep Transfer Learning for FDD Massive MIMO Systems
    Zeng, Jun
    Sun, Jinlong
    Gui, Guan
    Adebisi, Bamidele
    Ohtsuki, Tomoaki
    Gacanin, Haris
    Sari, Hikmet
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (04) : 1253 - 1265
  • [23] Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO Systems
    Shin, Junyong
    Kang, Yujin
    Jeon, Yo-Seb
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (09) : 2382 - 2386
  • [24] A Markovian Model-Driven Deep Learning Framework for Massive MIMO CSI Feedback
    Liu, Zhenyu
    del Rosario, Mason
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) : 1214 - 1228
  • [25] A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback
    Chen, Tong
    Guo, Jiajia
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [26] Distributed Deep Convolutional Compression for Massive MIMO CSI Feedback
    Mashhadi, Mahdi Boloursaz
    Yang, Qianqian
    Gunduz, Deniz
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2621 - 2633
  • [27] Deep Learning-Based CSI Feedback for Beamforming in Single- and Multi-Cell Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 1872 - 1884
  • [28] Deep Learning for Efficient CSI Feedback in Massive MIMO: Adapting to New Environments and Small Datasets
    Liu, Zhenyu
    Wang, Li
    Xu, Lianming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 12297 - 12312
  • [29] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [30] Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems
    Liang, Peizhe
    Fan, Jiancun
    Shen, Wenhan
    Qin, Zhijin
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 9217 - 9222