Multi-resolution CSI Feedback with Deep Learning in Massive MIMO System

被引:133
作者
Lu, Zhilin [1 ]
Wang, Jintao [1 ]
Song, Jian [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing, Peoples R China
来源
ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC) | 2020年
基金
国家重点研发计划;
关键词
Massive MIMO; CSI feedback; deep learning; convolutional neural network; inception network;
D O I
10.1109/icc40277.2020.9149229
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In massive multiple-input multiple-output (MIMO) system, user equipment (UE) needs to send downlink channel state information (CSI) back to base station (BS). However, the feedback becomes expensive with the growing complexity of CSI in massive MIMO system. Recently, deep learning (DL) approaches are used to improve the reconstruction efficiency of CSI feedback. In this paper, a novel feedback network named CRNet is proposed to achieve better performance via extracting CSI features on multiple resolutions. An advanced training scheme that further boosts the network performance is also introduced. Simulation results show that the proposed CRNet outperforms the state-of-the-art CsiNet under the same computational complexity without any extra information. The open source codes are available at https://github.com/Kylin9511/CRNet
引用
收藏
页数:6
相关论文
共 18 条
[1]  
Guo J., 2019, CONVOLUTIONAL NEURAL
[2]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[3]   ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements [J].
Kulkarni, Kuldeep ;
Lohit, Suhas ;
Turaga, Pavan ;
Kerviche, Ronan ;
Ashok, Amit .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :449-458
[4]  
Kuo PH, 2012, IEEE WCNC
[5]   Massive MIMO for Next Generation Wireless Systems [J].
Larsson, Erik G. ;
Edfors, Ove ;
Tufvesson, Fredrik ;
Marzetta, Thomas L. .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :186-195
[6]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[7]   Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback [J].
Liu, Zhenyu ;
Zhang, Lin ;
Ding, Zhi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :889-892
[8]  
Loshchilov I., LEARNING, V10, P3
[9]   An Overview of Massive MIMO: Benefits and Challenges [J].
Lu, Lu ;
Li, Geoffrey Ye ;
Swindlehurst, A. Lee ;
Ashikhmin, Alexei ;
Zhang, Rui .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :742-758
[10]   Compressed Channel Feedback for Correlated Massive MIMO Systems [J].
Sim, Min Soo ;
Park, Jeonghun ;
Chae, Chan-Byoung ;
Heath, Robert W., Jr. .
JOURNAL OF COMMUNICATIONS AND NETWORKS, 2016, 18 (01) :95-104