STABILITY OF A PREDATOR-PREY SYSTEM WITH PREY TAXIS IN A GENERAL CLASS OF FUNCTIONAL RESPONSES

被引:12
作者
Yousefnezhad, M. [1 ]
Mohammadi, S. A. [2 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Univ Yasuj, Coll Sci, Dept Math, Yasuj 7591874934, Iran
关键词
predator-prey; global stability; steady state; Lyapunov function; GLOBAL EXISTENCE; LOGISTIC SOURCE; CHEMOTAXIS; MODEL;
D O I
10.1016/S0252-9602(15)30078-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a diffusive predator-prey system with general functional responses and prey-tactic sensitivities is studied. Providing such generality, we construct a Lyapunov function and we show that the positive constant steady state is locally and globally asymptotically stable. With an eye on the biological interpretations, a numerical simulation is performed to illustrate the feasibility of the analytical findings
引用
收藏
页码:62 / 72
页数:11
相关论文
共 21 条
[1]   A reaction-diffusion system modeling predator-prey with prey-taxis [J].
Ainseba, Bedr'Eddine ;
Bendahmane, Mostafa ;
Noussair, Ahmed .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) :2086-2105
[2]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[3]  
Cieslak T, 2007, TOPOL METHOD NONL AN, V29, P361
[4]   Global existence for a parabolic chemotaxis model with prevention of overcrowding [J].
Hillen, T ;
Painter, K .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (04) :280-301
[5]  
Jin Z, 2006, ACTA MATH SCI B, V26B
[6]   TRAVELING BANDS OF CHEMOTACTIC BACTERIA - THEORETICAL ANALYSIS [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 30 (02) :235-&
[7]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&
[8]  
KELLER EF, 1980, LECT NOTES BIOMATH, V38, P379
[9]  
Kowalczyk R, 1971, J MATH ANAL APPL, V30, P235
[10]  
Ladyzhenskaia O. A., 1968, Linear and quasi linear equations of parabolic type, V23