A high-resolution map of synteny disruptions in gibbon and human genomes

被引:41
作者
Carbone, Lucia [1 ]
Vessere, Gery M.
ten Hallers, Boudewijn F. H.
Zhu, Baoli
Osoegawa, Kazutoyo
Mootnick, Alan
Kofler, Andrea
Wienberg, Johannes
Rogers, Jane
Humphray, Sean
Scott, Carol
Harris, R. Alan
Milosavljevic, Aleksandar
de Jong, Pieter J.
机构
[1] Childrens Hosp Oakland, Res Inst, BACPAC Resources, Oakland, CA 94609 USA
[2] Gibbon Conservat Ctr, Santa Clarita, CA USA
[3] Chrombios GmbH, Raubling, Germany
[4] Univ Munich, Dept Biol 2, Munich, Germany
[5] Wellcome Trust Sanger Inst, Cambridge, England
[6] Baylor Coll Med, Dept Mol & Huma Genet, Houston, TX 77030 USA
关键词
IN-SITU HYBRIDIZATION; SEGMENTAL DUPLICATIONS; CHROMOSOME REARRANGEMENTS; PERICENTRIC-INVERSION; HYLOBATES-CONCOLOR; DNA MICROARRAY; PHYSICAL MAP; EVOLUTION; CHIMPANZEE; MOUSE;
D O I
10.1371/journal.pgen.0020223
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white- cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high- resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.
引用
收藏
页码:2162 / 2175
页数:14
相关论文
共 54 条
[21]   GENOMIC REORGANIZATION IN THE CONCOLOR GIBBON (HYLOBATES CONCOLOR) REVEALED BY CHROMOSOME PAINTING [J].
KOEHLER, U ;
BIGONI, F ;
WIENBERG, J ;
STANYON, R .
GENOMICS, 1995, 30 (02) :287-292
[22]   GENOMIC REORGANIZATION AND DISRUPTED CHROMOSOMAL SYNTENY IN THE SIAMANG (HYLOBATES SYNDACTYLUS) REVEALED BY FLUORESCENCE IN-SITU HYBRIDIZATION [J].
KOEHLER, U ;
ARNOLD, N ;
WIENBERG, J ;
TOFANELLI, S ;
STANYON, R .
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 1995, 97 (01) :37-47
[23]   A set of BAC clones spanning the human genome [J].
Krzywinski, M ;
Bosdet, I ;
Smailus, D ;
Chiu, R ;
Mathewson, C ;
Wye, N ;
Barber, S ;
Brown-John, M ;
Chan, S ;
Chand, S ;
Cloutier, A ;
Girn, N ;
Lee, D ;
Masson, A ;
Mayo, M ;
Olson, T ;
Pandoh, P ;
Prabhu, AL ;
Schoenmakers, E ;
Tsai, M ;
Albertson, D ;
Lam, W ;
Choy, CO ;
Osoegawa, K ;
Zhao, SY ;
de Jong, PJ ;
Schein, J ;
Jones, S ;
Marra, MA .
NUCLEIC ACIDS RESEARCH, 2004, 32 (12) :3651-3660
[24]   Chromosomal translocations mediated by palindromic DNA [J].
Kurahashi, Hiroki ;
Inagaki, Hidehito ;
Ohye, Tamae ;
Kogo, Hiroshi ;
Kato, Takema ;
Emanuel, Beverly S. .
CELL CYCLE, 2006, 5 (12) :1297-1303
[25]   Endogenous retrovirus HERV-I LTR family in primates: sequences, phylogeny, and evolution [J].
Lee, J. -W. ;
Kim, H. -S. .
ARCHIVES OF VIROLOGY, 2006, 151 (08) :1651-1658
[26]   FLUORESCENCE INSITU HYBRIDIZATION WITH ALU AND L1 POLYMERASE CHAIN-REACTION PROBES FOR RAPID CHARACTERIZATION OF HUMAN-CHROMOSOMES IN HYBRID CELL-LINES [J].
LICHTER, P ;
LEDBETTER, SA ;
LEDBETTER, DH ;
WARD, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (17) :6634-6638
[27]   GROSS CHROMOSOME REARRANGEMENTS MEDIATED BY TRANSPOSABLE ELEMENTS IN DROSOPHILA-MELANOGASTER [J].
LIM, JK ;
SIMMONS, MJ .
BIOESSAYS, 1994, 16 (04) :269-275
[28]   Genome sequence, comparative analysis and haplotype structure of the domestic dog [J].
Lindblad-Toh, K ;
Wade, CM ;
Mikkelsen, TS ;
Karlsson, EK ;
Jaffe, DB ;
Kamal, M ;
Clamp, M ;
Chang, JL ;
Kulbokas, EJ ;
Zody, MC ;
Mauceli, E ;
Xie, XH ;
Breen, M ;
Wayne, RK ;
Ostrander, EA ;
Ponting, CP ;
Galibert, F ;
Smith, DR ;
deJong, PJ ;
Kirkness, E ;
Alvarez, P ;
Biagi, T ;
Brockman, W ;
Butler, J ;
Chin, CW ;
Cook, A ;
Cuff, J ;
Daly, MJ ;
DeCaprio, D ;
Gnerre, S ;
Grabherr, M ;
Kellis, M ;
Kleber, M ;
Bardeleben, C ;
Goodstadt, L ;
Heger, A ;
Hitte, C ;
Kim, L ;
Koepfli, KP ;
Parker, HG ;
Pollinger, JP ;
Searle, SMJ ;
Sutter, NB ;
Thomas, R ;
Webber, C ;
Lander, ES .
NATURE, 2005, 438 (7069) :803-819
[29]   Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster [J].
Locke, DP ;
Archidiacono, N ;
Misceo, D ;
Cardone, MF ;
Deschamps, S ;
Roe, B ;
Rocchi, M ;
Eichler, EE .
GENOME BIOLOGY, 2003, 4 (08)
[30]   A physical map of the human genome [J].
McPherson, JD ;
Marra, M ;
Hillier, L ;
Waterston, RH ;
Chinwalla, A ;
Wallis, J ;
Sekhon, M ;
Wylie, K ;
Mardis, ER ;
Wilson, RK ;
Fulton, R ;
Kucaba, TA ;
Wagner-McPherson, C ;
Barbazuk, WB ;
Gregory, SG ;
Humphray, SJ ;
French, L ;
Evans, RS ;
Bethel, G ;
Whittaker, A ;
Holden, JL ;
McCann, OT ;
Dunham, A ;
Soderlund, C ;
Scott, CE ;
Bentley, DR ;
Schuler, G ;
Chen, HC ;
Jang, WH ;
Green, ED ;
Idol, JR ;
Maduro, VVB ;
Montgomery, KT ;
Lee, E ;
Miller, A ;
Emerling, S ;
Kucherlapati, R ;
Gibbs, R ;
Scherer, S ;
Gorrell, JH ;
Sodergren, E ;
Clerc-Blankenburg, K ;
Tabor, P ;
Naylor, S ;
Garcia, D ;
de Jong, PJ ;
Catanese, JJ ;
Nowak, N ;
Osoegawa, K ;
Qin, SZ .
NATURE, 2001, 409 (6822) :934-941