A high-resolution map of synteny disruptions in gibbon and human genomes

被引:41
作者
Carbone, Lucia [1 ]
Vessere, Gery M.
ten Hallers, Boudewijn F. H.
Zhu, Baoli
Osoegawa, Kazutoyo
Mootnick, Alan
Kofler, Andrea
Wienberg, Johannes
Rogers, Jane
Humphray, Sean
Scott, Carol
Harris, R. Alan
Milosavljevic, Aleksandar
de Jong, Pieter J.
机构
[1] Childrens Hosp Oakland, Res Inst, BACPAC Resources, Oakland, CA 94609 USA
[2] Gibbon Conservat Ctr, Santa Clarita, CA USA
[3] Chrombios GmbH, Raubling, Germany
[4] Univ Munich, Dept Biol 2, Munich, Germany
[5] Wellcome Trust Sanger Inst, Cambridge, England
[6] Baylor Coll Med, Dept Mol & Huma Genet, Houston, TX 77030 USA
关键词
IN-SITU HYBRIDIZATION; SEGMENTAL DUPLICATIONS; CHROMOSOME REARRANGEMENTS; PERICENTRIC-INVERSION; HYLOBATES-CONCOLOR; DNA MICROARRAY; PHYSICAL MAP; EVOLUTION; CHIMPANZEE; MOUSE;
D O I
10.1371/journal.pgen.0020223
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white- cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high- resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.
引用
收藏
页码:2162 / 2175
页数:14
相关论文
共 54 条
[1]   Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements [J].
Armengol, L ;
Pujana, MA ;
Cheung, J ;
Scherer, SW ;
Estivill, X .
HUMAN MOLECULAR GENETICS, 2003, 12 (17) :2201-2208
[2]   Identification of complex chromosome rearrangements in the gibbon by fluorescent in situ hybridization (FISH) of a human chromosome 2q specific microlibrary, yeast artificial chromosomes, and reciprocal chromosome painting [J].
Arnold, N ;
Stanyon, R ;
Jauch, A ;
OBrien, P ;
Wienberg, J .
CYTOGENETICS AND CELL GENETICS, 1996, 74 (1-2) :80-85
[3]   Hotspots of mammalian chromosomal evolution [J].
Bailey, JA ;
Baertsch, R ;
Kent, WJ ;
Haussler, D ;
Eichler, EE .
GENOME BIOLOGY, 2004, 5 (04)
[4]   Recent segmental duplications in the human genome [J].
Bailey, JA ;
Gu, ZP ;
Clark, RA ;
Reinert, K ;
Samonte, RV ;
Schwartz, S ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Eichler, EE .
SCIENCE, 2002, 297 (5583) :1003-1007
[5]   Segmental duplications: Organization and impact within the current Human Genome Project assembly [J].
Bailey, JA ;
Yavor, AM ;
Massa, HF ;
Trask, BJ ;
Eichler, EE .
GENOME RESEARCH, 2001, 11 (06) :1005-1017
[6]   The Foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii [J].
Casals, F ;
Cáceres, M ;
Ruiz, A .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (05) :674-685
[7]   Chromosome evolution in eukaryotes: a multi-kingdom perspective [J].
Coghlan, A ;
Eichler, EE ;
Oliver, SG ;
Paterson, AH ;
Stein, L .
TRENDS IN GENETICS, 2005, 21 (12) :673-682
[8]   ANALYSIS OF KARYOTYPE OF 2 SPECIES OF GIBBONS (HYLOBATES-LAR AND H HYLOBATES-CONCOLOR) BY VARIOUS BANDING TECHNIQUES [J].
DUTRILLAUX, B ;
RETHORE, MO ;
AURIAS, A ;
GOUSTARD, M .
CYTOGENETICS AND CELL GENETICS, 1975, 15 (02) :81-91
[9]   Chromosome 6 phylogeny in primates and centromere repositioning [J].
Eder, V ;
Ventura, M ;
Ianigro, M ;
Teti, M ;
Rocchi, M ;
Archidiacono, N .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (09) :1506-1512
[10]   Micro-array analyses decipher exceptional complex familial chromosomal rearrangement [J].
Fauth, C ;
Gribble, SM ;
Porter, KM ;
Codina-Pascual, M ;
Ng, BL ;
Kraus, J ;
Uhrig, S ;
Leifheit, J ;
Haaf, T ;
Fiegler, H ;
Carter, NP ;
Speicher, MR .
HUMAN GENETICS, 2006, 119 (1-2) :145-153