Effect of Hf/Zr Ratio on Shape Memory Properties of High Temperature Ni50.3Ti29.7(Hf,Zr)20 Alloys

被引:26
作者
Bigelow, G. S. [1 ]
Benafan, O. [1 ]
Garg, A. [1 ,2 ]
Noebe, R. D. [1 ]
机构
[1] NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA
[2] Univ Toledo, Toledo, OH 43606 USA
关键词
High temperature shape memory alloys; NiTiHf; NiTiZr; NiTiHfZr; Actuators; H-phase; TI-NI-ZR; MARTENSITIC-TRANSFORMATION; MECHANICAL-BEHAVIOR; RICH NITIHF; HF; MICROSTRUCTURE; PRECIPITATION; PHASE; COMPATIBILITY; STRAINS;
D O I
10.1016/j.scriptamat.2020.11.008
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of Ni50.3Ti29.7(Hf,Zr)(20) (Zr=0 to 20 at %) high-temperature shape memory alloys were investigated to determine the effect of varying Hf/Zr ratio on shape memory properties. Uniaxial constant-force thermal cycling (UCFTC) tests and electron microscopy were used to determine the effect of composition on microstructure, transformation temperatures, and functional material properties. In general, substitution of Zr for Hf resulted in a slight decrease in transformation temperatures, a negligible change in transformation strain, and an improvement in dimensional stability. Thus, the entire range of NiTiHfZr alloys resulted in acceptable actuation properties across the compositions studied with the additional ability to adjust composition for cost and mass savings. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 51 条
[1]   Functional fatigue of Ni50.3Ti25Hf24.7 Heterogeneities and evolution of local transformation strains [J].
Abuzaid, Wael ;
Sehitoglu, Huseyin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 696 :482-492
[2]  
Backman L., 2019, ARXIV PREPRINT ARXIV
[3]   Transformation behavior in NiTi-20Hf shape memory alloys - Transformation temperatures and hardness [J].
Benafan, O. ;
Bigelow, G. S. ;
Scheiman, D. A. .
SCRIPTA MATERIALIA, 2018, 146 :251-254
[4]   Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy [J].
Benafan, O. ;
Garg, A. ;
Noebe, R. D. ;
Bigelow, G. S. ;
Padula, S. A., II ;
Gaydosh, D. J. ;
Schell, N. ;
Mabe, J. H. ;
Vaidyanathan, R. .
INTERMETALLICS, 2014, 50 :94-107
[5]   Microstructural Response During Isothermal and Isobaric Loading of a Precipitation-Strengthened Ni-29.7Ti-20Hf High-Temperature Shape Memory Alloy [J].
Benafan, O. ;
Noebe, R. D. ;
Padula, S. A., II ;
Vaidyanathan, R. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (12) :4539-4552
[6]  
Benafan O., 2020, SHAPE MEM SUPERELAST
[7]  
Benafan O., SMART MATER STRUCT
[8]   Effect of Composition and Applied Stress on the Transformation Behavior in NiXTi80-XZr20 Shape Memory Alloys [J].
Bigelow, G. S. ;
Benafan, O. ;
Garg, A. ;
Lundberg, R. ;
Noebe, R. D. .
SHAPE MEMORY AND SUPERELASTICITY, 2019, 5 (04) :444-456
[9]   Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy [J].
Bigelow, G. S. ;
Garg, A. ;
Padula, S. A., II ;
Gaydosh, D. J. ;
Noebe, R. D. .
SCRIPTA MATERIALIA, 2011, 64 (08) :725-728
[10]   Composition, Compatibility, and the Functional Performances of Ternary NiTiX High-Temperature Shape Memory Alloys [J].
Bucsek A.N. ;
Hudish G.A. ;
Bigelow G.S. ;
Noebe R.D. ;
Stebner A.P. .
Shape Memory and Superelasticity, 2016, 2 (01) :62-79