Estimation of electrical resistivity using artificial neural networks: a case study from Lublin Basin, SE Poland

被引:9
|
作者
Wazny, Jakub [1 ]
Stefaniuk, Michal [1 ]
Cygal, Adam [1 ]
机构
[1] AGH Univ Sci & Technol, Krakow, Poland
关键词
Artificial neural networks; Well logging; Electrical resistivity; LLD; Magnetotellurics; Parametric sounding; Lublin basin;
D O I
10.1007/s11600-021-00554-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Artificial neural networks method (ANNs) is a common estimation tool used for geophysical applications. Considering borehole data, when the need arises to supplement a missing well log interval or whole logging-ANNs provide a reliable solution. Supervised training of the network on a reliable set of borehole data values with further application of this network on unknown wells allows creation of synthetic values of missing geophysical parameters, e.g., resistivity. The main assumptions for boreholes are: representation of similar geological conditions and the use of similar techniques of well data collection. In the analyzed case, a set of Multilayer Perceptrons were trained on five separate chronostratigraphic intervals of borehole, considered as training data. The task was to predict missing deep laterolog (LLD) logging in a borehole representing the same sequence of layers within the Lublin Basin area. Correlation between well logs data exceeded 0.8. Subsequently, magnetotelluric parametric soundings were modeled and inverted on both boreholes. Analysis showed that congenial Occam 1D models had better fitting of TM mode of MT data in each case. Ipso facto, synthetic LLD log could be considered as a basis for geophysical and geological interpretation. ANNs provided solution for supplementing datasets based on this analytical approach.
引用
收藏
页码:631 / 642
页数:12
相关论文
共 50 条
  • [21] Estimation of operative temperature in buildings using artificial neural networks
    Soleimani-Mohseni, M
    Thomas, B
    Fahlén, P
    ENERGY AND BUILDINGS, 2006, 38 (06) : 635 - 640
  • [22] A primary estimation of the cardiometabolic risk by using artificial neural networks
    Kupusinac, Aleksandar
    Doroslovacki, Rade
    Malbaski, Dusan
    Srdic, Biljana
    Stokic, Edith
    COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (06) : 751 - 757
  • [23] Flood estimation at ungauged sites using artificial neural networks
    Dawson, CW
    Abrahart, RJ
    Shamseldin, AY
    Wilby, RL
    JOURNAL OF HYDROLOGY, 2006, 319 (1-4) : 391 - 409
  • [24] Predicting energy consumption using artificial neural networks: a case study of the UAE
    Eletter, Shorouq F.
    Elrefae, Ghaleb A.
    Belarbi, Abdelhafid K.
    Abu-Rashid, Jamal
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) : 137 - 154
  • [25] Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Coruh basin, Turkey
    Can, Ibrahim
    Tosunoglu, Fatih
    Kahya, Ercan
    WATER AND ENVIRONMENT JOURNAL, 2012, 26 (04) : 567 - 576
  • [26] DETERMINING THE BEST NORMALIZATION TECHNIQUE FOR ESTIMATION USING ARTIFICIAL NEURAL NETWORKS: CASE OF BRUSHTOOTH LIZARDFISH
    Sangun, Levent
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (04): : 2842 - 2847
  • [27] Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks
    Adem Bayram
    Murat Kankal
    Hizir Önsoy
    Environmental Monitoring and Assessment, 2012, 184 : 4355 - 4365
  • [28] Basin scale water management and forecasting using artificial neural networks
    Khalil, AF
    McKee, M
    Kemblowski, M
    Asefa, T
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2005, 41 (01): : 195 - 208
  • [29] Estimation of strength parameters of rock using artificial neural networks
    Kripamoy Sarkar
    Avyaktanand Tiwary
    T. N. Singh
    Bulletin of Engineering Geology and the Environment, 2010, 69 : 599 - 606
  • [30] Estimation of air pollution parameters using artificial neural networks
    Cigizoglu, HK
    Alp, K
    Kömürcü, M
    ADVANCES IN AIR POLLUTION MODELING FOR ENVIRONMENTAL SECURITY, 2005, 54 : 63 - 75