Inequalities for the Euler-Mascheroni constant

被引:25
作者
Chen, Chao-Ping [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454003, Henan, Peoples R China
关键词
Euler's constant; Harmonic numbers; Inequality; Psi function; Asymptotic expansion; CONVERGENCE;
D O I
10.1016/j.aml.2009.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let gamma = 0.577215... be the Euler-Mascheroni constant, and let R-n = Sigma(n)(k=1) 1/k - log (n + 1/2). We prove that for all integers n >= 1. 1/24(n +a)(2) <= R-n - gamma < 1/24(n + b)(2) with the best possible constants a = - 1/root 24[-gamma + 1 - log(3/2)] - 1 = 0.55106 ... and b = 1/2. This refines the result of D. W. DeTemple, who proved that the double inequality holds with a = 1 and b = 0. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 12 条
[1]   Inequalities for the gamma and polygamma functions [J].
Alzer, H .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1998, 68 (1) :363-372
[2]   INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC-FUNCTIONS [J].
ANDERSON, GD ;
BARNARD, RW ;
RICHARDS, KC ;
VAMANAMURTHY, MK ;
VUORINEN, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (05) :1713-1723
[3]  
[Anonymous], 2001, Report Univ. Jyv"askyl"a., DOI DOI 10.48550/ARXIV.0712.3856
[4]  
[Anonymous], 1991, Amer. Math. Monthly
[5]  
[Anonymous], 1971, Math. Gaz.
[6]  
Chen CP, 2009, J MATH INEQUAL, V3, P79
[7]  
CHEN CP, 2003, RGMIA RES REP COLL
[8]   A QUICKER CONVERGENCE TO EULERS CONSTANT [J].
DETEMPLE, DW .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (05) :468-470
[9]   On the computation of the Euler constant γ [J].
Karatsuba, EA .
NUMERICAL ALGORITHMS, 2000, 24 (1-2) :83-97
[10]   CONVERGENCE WITH PICTURES [J].
RIPPON, PJ .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (06) :476-478