On prime factors of determinants of circulant matrices

被引:3
作者
Sburlati, Giovanni [1 ]
机构
[1] CNR, Ist Informat & Telemat, Area Ric, CAP, I-56124 Pisa, Italy
关键词
Circulant matrix; Matrix determinant; Finite fields; Polynomials over Z(p); PERMANENTS;
D O I
10.1016/j.laa.2009.07.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the probability that the determinant of an integer circulant n x n matrix is divisible by the prime p (where p does not divide n). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:100 / 106
页数:7
相关论文
共 8 条
[1]   How fast can one compute the permanent of circulant matrices? [J].
Bernasconi, A ;
Codenotti, B ;
Crespi, V ;
Resta, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 292 (1-3) :15-37
[2]   Computation of sparse circulant permanents via determinants [J].
Codenotti, B ;
Resta, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 (1-3) :15-34
[3]  
DAGUM P, 1988, P 29 IEEE S FDN COMP, P412
[4]  
Davis P. J., 1979, Circulant Matrices
[5]   On the number of different permanents of some sparse (0,1)-circulant matrices [J].
Resta, G ;
Sburlati, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 375 :197-209
[6]  
Ryser H. J., 1963, CARUS MATH MONOGRAPH, pxiv+154
[7]   On the values of permanents of (0,1) circulant matrices with three ones per row [J].
Sburlati, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 :284-297
[8]   On the parity of permanents of circulant matrices [J].
Sburlati, Giovanni .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :1949-1955