A Spatially Weighted Neural Network Based Water Quality Assessment Method for Large-Scale Coastal Areas

被引:36
作者
Du, Zhenhong [1 ,2 ]
Qi, Jin [1 ]
Wu, Sensen [1 ,2 ]
Zhang, Feng [1 ,2 ]
Liu, Renyi [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Earth Sci, Hangzhou 310027, Peoples R China
[2] Zhejiang Prov Key Lab Geog Informat Sci, Hangzhou 310028, Peoples R China
基金
中国国家自然科学基金;
关键词
Water quality assessment; Coastal water quality; Large-scale areas; Remote sensing; Geographically neural network weighted regression; Spatial nonstationarity;
D O I
10.1021/acs.est.0c05928
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate assessment of large-scale and complex coastal waters is a grand challenge due to the spatial nonstationarity and complex nonlinearity involved in integrating remote sensing and in situ data. We developed a water quality assessment method based on a newly proposed geographically neural network weighted regression (GNNWR) model to address that challenge and obtained a highly accurate and realistic water quality distribution on the basis of the comprehensive index of Chinese Water Quality Classification Standards. Using geostationary ocean color imager (GOCI) data and observations from 1240 water quality sampling sites, we conducted experiments for a typical large-scale coastal area of the Zhejiang Coastal Sea (ZCS), People's Republic of China. The GNNWR model achieved higher prediction performance (average R-2 = 84%) in comparison to the widely used models, and the obtained water quality classification (WQC) maps in May of 2015-2017 and August 2015 can depict intuitively reasonable spatiotemporal patterns of water quality in the ZCS. Furthermore, an analysis of WQC maps successfully illustrated how terrestrial discharges, anthropogenic activities, and seasonal changes influenced the coastal environment in the ZCS. Finally, we identified essential regions and provided targeted regulatory interventions for them to facilitate the management and restoration of large-scale and complex coastal environments.
引用
收藏
页码:2553 / 2563
页数:11
相关论文
共 53 条
[1]   Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality [J].
Aguilera, PA ;
Frenich, AG ;
Torres, JA ;
Castro, H ;
Vidal, JLM ;
Canton, M .
WATER RESEARCH, 2001, 35 (17) :4053-4062
[2]   Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources [J].
Alvarez, X. ;
Valero, E. ;
Santos, R. M. B. ;
Varandas, S. G. P. ;
Fernandes, L. F. Sanches ;
Pacheco, F. A. L. .
LAND USE POLICY, 2017, 69 :1-11
[3]  
[Anonymous], 1997, GB30971997 MIN EC EN
[4]  
[Anonymous], 2000, REMOTE SENSING OCEAN
[5]   A review of methods for analysing spatial and temporal patterns in coastal water quality [J].
Bierman, Paul ;
Lewis, Megan ;
Ostendorf, Bertram ;
Tanner, Jason .
ECOLOGICAL INDICATORS, 2011, 11 (01) :103-114
[6]   Declining oxygen in the global ocean and coastal waters [J].
Breitburg, Denise ;
Levin, Lisa A. ;
Oschlies, Andreas ;
Gregoire, Marilaure ;
Chavez, Francisco P. ;
Conley, Daniel J. ;
Garcon, Veronique ;
Gilbert, Denis ;
Gutierrez, Dimitri ;
Isensee, Kirsten ;
Jacinto, Gil S. ;
Limburg, Karin E. ;
Montes, Ivonne ;
Naqvi, S. W. A. ;
Pitcher, Grant C. ;
Rabalais, Nancy N. ;
Roman, Michael R. ;
Rose, Kenneth A. ;
Seibel, Brad A. ;
Telszewski, Maciej ;
Yasuhara, Moriaki ;
Zhang, Jing .
SCIENCE, 2018, 359 (6371) :46-+
[7]   Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models [J].
Chang, Ni-Bin ;
Xuan, Zhemin ;
Yang, Y. Jeffrey .
REMOTE SENSING OF ENVIRONMENT, 2013, 134 :100-110
[8]  
[陈斌 Chen Bin], 2017, [海洋学报, Acta Oceanologica Sinica], V39, P96
[9]   Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea [J].
Chen, Chung-Chi ;
Shiah, Fuh-Kwo ;
Chiang, Kuo-Ping ;
Gong, Gwo-Ching ;
Kemp, W. Michael .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2009, 114
[10]   A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide [J].
Chen, Jie ;
de Hoogh, Kees ;
Gulliver, John ;
Hoffmann, Barbara ;
Hertel, Ole ;
Ketzel, Matthias ;
Bauwelinck, Mariska ;
van Donkelaar, Aaron ;
Hvidtfeldt, Ulla A. ;
Katsouyanni, Klea ;
Janssen, Nicole A. H. ;
Martin, Randall V. ;
Samoli, Evangelia ;
Schwartz, Per E. ;
Stafoggia, Massimo ;
Bellander, Tom ;
Strak, Maciek ;
Wolf, Kathrin ;
Vienneau, Danielle ;
Vermeulen, Roel ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENT INTERNATIONAL, 2019, 130