Data reconstruction with information granules: An augmented method of fuzzy clustering

被引:19
作者
Hu, Xingchen [1 ]
Pedrycz, Witold [1 ,2 ]
Wu, Guohua [3 ]
Wang, Xianmin [4 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2V4, Canada
[2] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
[3] Natl Univ Def Technol, Sci & Technol Informat Syst Engn Lab, Changsha 410073, Hunan, Peoples R China
[4] China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Information granulation; Fuzzy clustering; Granular computing; Granulation-degranulation; Fuzzy C-means; Data reconstruction; DIFFERENTIAL EVOLUTION; GRANULARITY; SEARCH; SPACE;
D O I
10.1016/j.asoc.2017.02.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Information granules form an abstract and efficient characterization of large volumes of numeric data. Fuzzy clustering is a commonly encountered information granulation approach. A reconstruction (degranulation) is about decoding information granules into numeric data. In this study, to enhance quality of reconstruction, we augment the generic data reconstruction approach by introducing a transformation mapping of the originally produced partition matrix and setting up an adjustment mechanism modifying a localization of the prototypes. We engage several population-based search algorithms to optimize interaction matrices and prototypes. A series of experimental results dealing with both synthetic and publicly available data sets are reported to show the enhancement of the data reconstruction performance provided by the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:523 / 532
页数:10
相关论文
共 42 条
[1]   Information granularity model for evolving context-based fuzzy system [J].
Ahmed, Md. Manjur ;
Isa, Nor Ashidi Mat .
APPLIED SOFT COMPUTING, 2015, 33 :183-196
[2]  
[Anonymous], GRANUL COMPUT
[3]   An expansion of fuzzy information granules through successive refinements of their information content and their use to system modeling [J].
Balamash, Abdullah ;
Pedrycz, Witold ;
Al-Hmouz, Rami ;
Morfeq, Ali .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (06) :2985-2997
[4]   Use of a fuzzy granulation-degranulation criterion for assessing cluster validity [J].
Bandyopadhyay, Sanghamitra ;
Saha, Sriparna ;
Pedrycz, Witold .
FUZZY SETS AND SYSTEMS, 2011, 170 (01) :22-42
[5]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[6]   Recent advances in differential evolution - An updated survey [J].
Das, Swagatam ;
Mullick, Sankha Subhra ;
Suganthan, P. N. .
SWARM AND EVOLUTIONARY COMPUTATION, 2016, 27 :1-30
[7]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[8]   Clustering Granular Data and Their Characterization With Information Granules of Higher Type [J].
Gacek, Adam ;
Pedrycz, Witold .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (04) :850-860
[9]   Granular modelling of signals: A framework of Granular Computing [J].
Gacek, Adam .
INFORMATION SCIENCES, 2013, 221 :1-11
[10]   Optimal allocation of information granularity in system modeling through the maximization of information specificity: A development of granular input space [J].
Hu, Xingchen ;
Pedrycz, Witold ;
Wang, Xianmin .
APPLIED SOFT COMPUTING, 2016, 42 :410-422