A New Supermemory Gradient Method without Line Search for Unconstrained Optimization

被引:0
作者
Liu, June [1 ]
Liu, Huanbin [1 ]
Zheng, Yue [1 ]
机构
[1] Huanggang Normal Univ, Inst Uncertain Syst, Coll Math & Informat Sci, Huanggang 438000, Hubei, Peoples R China
来源
SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009) | 2009年 / 56卷
关键词
Unconstrained optimization; Memory gradient method; Global convergence; Convergence rate; GLOBAL CONVERGENCE; DESCENT METHODS; FAMILY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new supermemory gradient method without line search for unconstrained optimization problems. The new method can guarantee a descent at each iteration. It sufficiently uses the previous multi-step iterative information at each iteration and avoids the storage and computation of matrices associated with the Hessian of objective functions, so that it is suitable to solve large scale optimization problems. We also prove its global convergence under some mild conditions. In addition, We analyze the linear convergence rate of the new method when the objective function is uniformly convex and twice continuously differentiable.
引用
收藏
页码:641 / 647
页数:7
相关论文
共 18 条
[1]   Global convergence of a two-parameter family of conjugate gradient methods without line search [J].
Chen, XD ;
Sun, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 146 (01) :37-45
[2]   STEPSIZE ANALYSIS FOR DESCENT METHODS [J].
COHEN, AI .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 33 (02) :187-205
[3]  
Dai Y. H., 2000, Nonlinear Conjugate Gradient Methods
[4]   Convergence properties of the Fletcher-Reeves method [J].
Dai, YH ;
Yuan, Y .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :155-164
[5]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[6]  
DAI YH, 1996, ADV MATH, V25, P552
[7]  
Fletcher R., 1987, PRACTICAL METHODS OP, V1
[8]   GLOBAL CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS FOR OPTIMIZATION [J].
Gilbert, Jean Charles ;
Nocedal, Jorge .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :21-42
[9]   A globally convergent version of the Polak-Ribiere conjugate gradient method [J].
Grippo, L ;
Lucidi, S .
MATHEMATICAL PROGRAMMING, 1997, 78 (03) :375-391
[10]   GLOBAL CONVERGENCE RESULT FOR CONJUGATE-GRADIENT METHODS [J].
HU, YF ;
STOREY, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 71 (02) :399-405