MRI-guided proton therapy planning: accounting for an inline MRI fringe field

被引:20
作者
Burigo, Lucas N. [1 ,2 ]
Oborn, Bradley M. [3 ,4 ]
机构
[1] German Canc Res Ctr, Heidelberg, Germany
[2] Heidelberg Inst Radiat Oncol HIRO Heidelberg, Natl Ctr Radiat Res Oncol NCRO, Heidelberg, Germany
[3] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW 2522, Australia
[4] Wollongong Hosp, ICCC, Wollongong, NSW 2500, Australia
关键词
MR-guided radiotherapy; proton therapy; treatment planning; proton beam delivery; MR-guided proton therapy; DOSE CALCULATION; MAGNETIC-FIELD; ION RADIOTHERAPY; BEAM DEFLECTION; MONTE-CARLO; FEASIBILITY; MOTION; BRAIN; OPTIMIZATION; SIMULATION;
D O I
10.1088/1361-6560/ab436a
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
MRI-guided proton therapy is being pursued for its promise to provide a more conformal, accurate proton therapy. However, the presence of the magnetic field imposes a challenge for the beam delivery as protons are deflected due to the Lorenz force. In this study, the impact of realistic inline MRI fringe field on IMPT plan delivery is investigated for a water phantom, liver tumor and prostate cancer differing in target volume, shape, and field configuration using Monte Carlo simulations. A method to correct for the shift of the beam spot positions in the presence of the inline magnetic field is presented. Results show that when not accounting for the effect of the magnetic field on the pencil beam delivery, the spot positions are substantially shifted and the quality of delivered plans is significantly deteriorated leading to dose inhomogeneities and creation of hot and cold spots. However, by correcting the pencil beam delivery, the dose quality of the IMPT plans is restored to a high degree. Nevertheless, adaptation of beam delivery alone is not robust regarding different treatment sites. By fully accounting during plan optimization for the dose distortions caused by the fringe and imaging fields, highly conformal IMPT plans are achieved. These results demonstrate proton pencil beam scanning and treatment planning can be adapted for precise delivery of state-of-the-art IMPT plans in MR-guided proton therapy in the presence of an inline MRI fringe field.
引用
收藏
页数:16
相关论文
共 40 条
  • [1] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [2] Geant4 developments and applications
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Dubois, PA
    Asai, M
    Barrand, G
    Capra, R
    Chauvie, S
    Chytracek, R
    Cirrone, GAP
    Cooperman, G
    Cosmo, G
    Cuttone, G
    Daquino, GG
    Donszelmann, M
    Dressel, M
    Folger, G
    Foppiano, F
    Generowicz, J
    Grichine, V
    Guatelli, S
    Gumplinger, P
    Heikkinen, A
    Hrivnacova, I
    Howard, A
    Incerti, S
    Ivanchenko, V
    Johnson, T
    Jones, F
    Koi, T
    Kokoulin, R
    Kossov, M
    Kurashige, H
    Lara, V
    Larsson, S
    Lei, F
    Link, O
    Longo, F
    Maire, M
    Mantero, A
    Mascialino, B
    McLaren, I
    Lorenzo, PM
    Minamimoto, K
    Murakami, K
    Nieminen, P
    Pandola, L
    Parlati, S
    Peralta, L
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) : 270 - 278
  • [3] Radiation oncology in the era of precision medicine
    Baumann, Michael
    Krause, Mechthild
    Overgaard, Jens
    Debus, Juergen
    Bentzen, Soren M.
    Daartz, Juliane
    Richter, Christian
    Zips, Daniel
    Bortfeld, Thomas
    [J]. NATURE REVIEWS CANCER, 2016, 16 (04) : 234 - 249
  • [4] Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy
    Bernatowicz, Kinga
    Zhang, Ye
    Perrin, Rosalind
    Weber, Damien C.
    Lomax, Antony J.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (16) : 6595 - 6609
  • [5] Motion in radiotherapy: particle therapy
    Bert, C.
    Durante, M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (16) : R113 - R114
  • [6] Shared data for intensity modulated radiation therapy (IMRT) optimization research: the CORT dataset
    Craft, David
    Bangert, Mark
    Long, Troy
    Papp, David
    Unkelbach, Jan
    [J]. GIGASCIENCE, 2014, 3
  • [7] A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times
    Edmund, Jens M.
    Kjer, Hans M.
    Van Leemput, Koen
    Hansen, Rasmus H.
    Andersen, Jon A. L.
    Andreasen, Daniel
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (23) : 7501 - 7519
  • [8] Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy
    Fuchs, Hermann
    Moser, Philipp
    Groeschl, Martin
    Georg, Dietmar
    [J]. MEDICAL PHYSICS, 2017, 44 (03) : 1149 - 1156
  • [9] MR-based synthetic CT generation using a deep convolutional neural network method
    Han, Xiao
    [J]. MEDICAL PHYSICS, 2017, 44 (04) : 1408 - 1419
  • [10] Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T
    Hartman, J.
    Kontaxis, C.
    Bol, G. H.
    Frank, S. J.
    Lagendijk, J. J. W.
    van Vulpen, M.
    Raaymakers, B. W.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (15) : 5955 - 5969