DPP: Data Privacy-Preserving for Cloud Computing based on Homomorphic Encryption

被引:3
|
作者
Wang, Jing [1 ]
Wu, Fengheng [2 ]
Zhang, Tingbo [1 ]
Wu, Xiaohua [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610051, Peoples R China
[2] Chengdu Sea&Dune Technol Co Ltd, Chengdu, Peoples R China
来源
2022 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, CYBERC | 2022年
基金
中国国家自然科学基金;
关键词
cloud computing; homomorphic encryption; privacy; preserving;
D O I
10.1109/CyberC55534.2022.00016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cloud computing has been widely used because of its low price, high reliability, and generality of services. However, considering that cloud computing transactions between users and service providers are usually asynchronous, data privacy involving users and service providers may lead to a crisis of trust, which in turn hinders the expansion of cloud computing applications. In this paper, we propose DPP, a data privacypreserving cloud computing scheme based on homomorphic encryption, which achieves correctness, compatibility, and security. DPP implements data privacy-preserving by introducing homomorphic encryption. To verify the security of DPP, we instantiate DPP based on the Paillier homomorphic encryption scheme and evaluate the performance. The experiment results show that the time-consuming of the key steps in the DPP scheme is reasonable and acceptable.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
  • [31] Privacy-Preserving Linear Regression on Distributed Data by Homomorphic Encryption and Data Masking
    Qiu, Guowei
    Gui, Xiaolin
    Zhao, Yingliang
    IEEE ACCESS, 2020, 8 : 107601 - 107613
  • [32] Practical Privacy-Preserving Medical Diagnosis using Homomorphic Encryption
    Carpov, Sergiu
    Thanh Hai Nguyen
    Sirdey, Renaud
    Constantino, Gianpiero
    Martinelli, Fabio
    PROCEEDINGS OF 2016 IEEE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2016, : 593 - 599
  • [33] Privacy-Preserving Data Synchronization Using Tensor-based Fully Homomorphic Encryption
    Gai, Keke
    Wu, Yulu
    Zhu, Liehuang
    Qiu, Meikang
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 1149 - 1156
  • [34] Privacy-preserving multikey computing framework for encrypted data in the cloud
    Zhang, Jun
    Jiang, Zoe L.
    Li, Ping
    Yiu, Siu Ming
    INFORMATION SCIENCES, 2021, 575 : 217 - 230
  • [35] Privacy-Preserving Decentralized Optimization Using Homomorphic Encryption
    Huo, Xiang
    Liu, Mingxi
    IFAC PAPERSONLINE, 2020, 53 (05): : 630 - 633
  • [36] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [37] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [38] Efficient homomorphic encryption framework for privacy-preserving regression
    Junyoung Byun
    Saerom Park
    Yujin Choi
    Jaewook Lee
    Applied Intelligence, 2023, 53 : 10114 - 10129
  • [39] Privacy-preserving Surveillance Methods using Homomorphic Encryption
    Bowditch, William
    Abramson, Will
    Buchanan, William J.
    Pitropakis, Nikolaos
    Hall, Adam J.
    ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 240 - 248
  • [40] Efficient homomorphic encryption framework for privacy-preserving regression
    Byun, Junyoung
    Park, Saerom
    Choi, Yujin
    Lee, Jaewook
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10114 - 10129