Geometric phases and criticality in spin systems

被引:29
作者
Pachos, Jiannis K. [1 ]
Carollo, Angelo C. M. [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 OWA, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 364卷 / 1849期
基金
英国工程与自然科学研究理事会;
关键词
Berry phases; critical phenomena; XY model;
D O I
10.1098/rsta.2006.1894
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.
引用
收藏
页码:3463 / 3476
页数:14
相关论文
共 23 条
[1]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]  
Bohm A., 2003, TEXT MONOGR, DOI DOI 10.1007/978-3-662-10333-36
[4]   Geometric phases and criticality in spin-chain systems [J].
Carollo, ACM ;
Pachos, JK .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[5]   Controlling spin exchange interactions of ultracold atoms in optical lattices [J].
Duan, LM ;
Demler, E ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[6]  
HAMA A, 2006, QUANTPH0602091
[7]   INTERSECTION OF POTENTIAL ENERGY SURFACES IN POLYATOMIC MOLECULES [J].
HERZBERG, G ;
LONGUETHIGGINS, HC .
DISCUSSIONS OF THE FARADAY SOCIETY, 1963, (35) :77-&
[8]   Optimal topological test for degeneracies of real Hamiltonians -: art. no. 060406 [J].
Johansson, N ;
Sjöqvist, E .
PHYSICAL REVIEW LETTERS, 2004, 92 (06)
[9]   ADIABATIC COOLING OF CESIUM TO 700-NK IN AN OPTICAL LATTICE [J].
KASTBERG, A ;
PHILLIPS, WD ;
ROLSTON, SL ;
SPREEUW, RJC ;
JESSEN, PS .
PHYSICAL REVIEW LETTERS, 1995, 74 (09) :1542-1545
[10]   STATISTICAL MECHANICS OF ANISOTROPIC LINEAR HEISENBERG MODEL [J].
KATSURA, S .
PHYSICAL REVIEW, 1962, 127 (05) :1508-&