Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating

被引:65
作者
Fear, Conner [1 ]
Parmananda, Mukul [1 ]
Kabra, Venkatesh [1 ]
Carter, Rachel [2 ]
Love, Corey T. [2 ]
Mukherjee, Partha P. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] US Naval Res Lab, Chem Div, Washington, DC 20375 USA
关键词
Lithium-ion Battery; Degradation; Lithium Plating; Battery Safety; Thermal inhomogeneity;
D O I
10.1016/j.ensm.2020.11.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the pursuit to enable the rapid charging of lithium-ion batteries, lithium plating at the anode poses one of the most significant challenges. Additionally, the heat generation that accompanies high rate battery operation in conjunction with non-uniform cooling and localized heating at tabs is known to result in thermal inhomogeneity. Such thermal anomalies in the absence of proper thermal management can instigate accelerated degradation in the cell. In this work, a physics-based interrogation of the link between thermal gradient induced inhomogeneity and lithium plating during charging is presented. The relative importance of in-plane vs. through-plane (inter-electrode) thermal gradients to charging performance and cell degradation is necessary to intelligently design packaging and cooling systems for large-format cells. While in-plane thermal gradients strongly influence active material utilization, the lithium plating severity was found to be very similar to an isothermal case at the same mean temperature. By contrast, interelectrode thermal gradients cause a shifting on the solid phase potential at each electrode during charging, related to the increase or decrease in overpotential due to local temperature variation. When the cathode temperature exceeds the anode temperature, lithium plating is exacerbated, and accelerated degradation occurs.
引用
收藏
页码:500 / 511
页数:12
相关论文
共 48 条
[1]   Enabling fast charging - A battery technology gap assessment [J].
Ahmed, Shabbir ;
Bloom, Ira ;
Jansen, Andrew N. ;
Tanim, Tanvir ;
Dufek, Eric J. ;
Pesaran, Ahmad ;
Burnham, Andrew ;
Carlson, Richard B. ;
Dias, Fernando ;
Hardy, Keith ;
Keyser, Matthew ;
Kreuzer, Cory ;
Markel, Anthony ;
Meintz, Andrew ;
Michelbacher, Christopher ;
Mohanpurkar, Manish ;
Nelson, Paul A. ;
Robertson, David. C. ;
Scoffield, Don ;
Shirk, Matthew ;
Stephens, Thomas ;
Vijayagopal, Ram ;
Zhang, Jiucai .
JOURNAL OF POWER SOURCES, 2017, 367 :250-262
[2]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[3]   Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions [J].
Burow, Daniel ;
Sergeeva, Kseniya ;
Calles, Simon ;
Schorb, Klaus ;
Boerger, Alexander ;
Roth, Christina ;
Heitjans, Paul .
JOURNAL OF POWER SOURCES, 2016, 307 :806-814
[4]   How Observable Is Lithium Plating? Differential Voltage Analysis to Identify and Quantify Lithium Plating Following Fast Charging of Cold Lithium-Ion Batteries [J].
Campbell, Ian D. ;
Marzook, Mohamed ;
Marinescu, Monica ;
Offer, Gregory J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) :A725-A739
[5]   Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient [J].
Carter, Rachel ;
Love, Corey T. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) :26328-26334
[6]   Effects of Nonuniform Temperature Distribution on Degradation of Lithium-Ion Batteries [J].
Cavalheiro, Gabriel M. ;
Iriyama, Takuto ;
Nelson, George J. ;
Huang, Shan ;
Zhang, Guangsheng .
JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (02)
[7]   Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles [J].
Chacko, Salvio ;
Chung, Yongmann M. .
JOURNAL OF POWER SOURCES, 2012, 213 :296-303
[8]   Modeling a porous intercalation electrode with two characteristic particle sizes [J].
Darling, R ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4201-4208
[9]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[10]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533