CRANK-NICOLSON SCHEME FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS

被引:14
作者
Hu, Yaozhong [1 ]
Liu, Yanghui [2 ]
Nualart, David [3 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[2] CUNY, Baruch Coll, Dept Math, New York, NY 10021 USA
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Fractional Brownian motion; stochastic differential equations; Crank-Nicolson scheme; strong convergence; exact rate; degenerate equations; Lie bracket; limiting distribution; fractional calculus; Malliavin calculus; SDES DRIVEN; APPROXIMATION SCHEMES; LIMIT-THEOREMS; CONVERGENCE;
D O I
10.1214/20-AAP1582
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the Crank-Nicolson scheme for stochastic differential equations (SDEs) driven by a multidimensional fractional Brownian motion with Hurst parameterH > 1/2. It is well known that for ordinary differential equations with proper conditions on the regularity of the coefficients, the Crank-Nicolson scheme achieves a convergence rate of n(-2), regardless of the dimension. In this paper we show that, due to the interactions between the driving processes, the corresponding Crank-Nicolson scheme for m-dimensional SDEs has a slower rate than for one-dimensional SDEs. Precisely, we shall prove that when the fBm is one-dimensional and when the drift term is zero, the Crank-Nicolson scheme achieves the convergence rate n(-2H), and when the drift term is nonzero, the exact rate turns out to be n(-1/2-H). In the general multidimensional case the exact rate equals n(-1/2-2H). In all these cases the asymptotic error is proved to satisfy some linear SDE. We also consider the degenerated cases when the asymptotic error equals zero.
引用
收藏
页码:39 / 83
页数:45
相关论文
共 27 条
[1]   MIXING AND STABILITY OF LIMIT-THEOREMS [J].
ALDOUS, DJ ;
EAGLESON, GK .
ANNALS OF PROBABILITY, 1978, 6 (02) :325-331
[2]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[3]   Differential Equations Driven by Rough Paths: An Approach via Discrete Approximation [J].
Davie, A. M. .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2008, (01)
[4]   A Milstein-type scheme without Levy area terms for SDEs driven by fractional Brownian motion [J].
Deya, A. ;
Neuenkirch, A. ;
Tindel, S. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (02) :518-550
[5]  
Friz P. K., 2010, Cambridge Studies in Advanced Mathematics, V120, DOI DOI 10.1017/CBO9780511845079
[6]   Convergence rates for the full Gaussian rough paths [J].
Friz, Peter ;
Riedel, Sebastian .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (01) :154-194
[7]   CLT AND OTHER LIMIT-THEOREMS FOR FUNCTIONALS OF GAUSSIAN-PROCESSES [J].
GIRAITIS, L ;
SURGAILIS, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02) :191-212
[8]   Milstein's type schemes for fractional SDEs [J].
Gradinaru, Mihai ;
Nourdin, Ivan .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (04) :1085-1098
[9]   TAYLOR SCHEMES FOR ROUGH DIFFERENTIAL EQUATIONS AND FRACTIONAL DIFFUSIONS [J].
Hu, Yaozhong ;
Liu, Yanghui ;
Nualart, David .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09) :3115-3162
[10]   RATE OF CONVERGENCE AND ASYMPTOTIC ERROR DISTRIBUTION OF EULER APPROXIMATION SCHEMES FOR FRACTIONAL DIFFUSIONS [J].
Hu, Yaozhong ;
Liu, Yanghui ;
Nualart, David .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (02) :1147-1207