Cohomologies of finite-dimensional simple alternative superalgebras of characteristic 3

被引:1
作者
López-Díaz, MC [1 ]
机构
[1] Univ Oviedo, Dept Matemat, Oviedo, Spain
关键词
alternative superalgebras of characteristic 3; Wedderburn splitting theorem; regular superbimodules; second cohomology groups;
D O I
10.1006/jabr.1999.8259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The second cohomology groups for certain simple finite-dimensional alternative superalgebras of characteristic 3 are calculated, with coefficients in regular superbimodules. Contrary to the case of algebras, the groups are not trivial since the Wedderburn splitting theorem is not always true for alternative superalgebras. The results complement the similar results by N. A. Pisarenko for the case of characteristic not equal 2,3. (C) 2000 Academic Press.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 9 条
[1]  
LOPEZDIAZ MC, IN PRESS COMMUN ALGE
[2]  
Pisarenko N., 1994, ALGEBRA LOGIKA+, V33, P386
[3]  
Pisarenko N. A., 1993, ALGEBR LOG+, V32, P231, DOI DOI 10.1007/BF02261747
[4]  
PISARENKO NA, 1994, THESIS NOVSIBIRSK ST
[5]  
Schafer RD., 1966, An Introduction to Nonassociative Algebras
[6]  
SHESTAKOV IP, 1997, ALGEBRA LOGIKA, V36, P675
[7]  
Wall C. T. C., 1963, J REINE ANGEW MATH, V213, P187, DOI DOI 10.1515/CRLL.1964.213.187
[8]  
Zhevlakov K. A, 1982, RINGS NEARLY ASS
[9]  
[No title captured]