Oxygen vacancy engineering boosted manganese vanadate toward high stability aqueous zinc ion batteries

被引:20
作者
Luo, Ping [1 ,2 ,3 ,7 ]
Huang, Zhen [1 ,2 ,3 ]
Liu, Gangyuan [1 ,2 ,3 ]
Liu, Chang [1 ,2 ,3 ]
Zhang, Peiping [1 ,2 ,3 ]
Xiao, Yao [1 ,2 ,3 ]
Tang, Wen [4 ]
Zhang, Wenwei [5 ]
Tang, Han [1 ,2 ,3 ]
Dong, Shijie [1 ,2 ,3 ,6 ]
机构
[1] Hubei Univ Technol, Sch Mat & Chem Engn, Hubei Prov Key Lab Green Mat Light Ind, Wuhan 430068, Peoples R China
[2] New Mat & Green Mfg Talent Intro & Innovat Demonst, Wuhan 430068, Peoples R China
[3] Hubei Univ Technol, Sch Mat & Chem Engn, Hubei Engn Lab Automot Lightweight Mat & Proc, Wuhan 430068, Peoples R China
[4] Southern Univ Sci & Technol, SUSTech Acad Adv Interdisciplinary Studies, Shenzhen 518055, Peoples R China
[5] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[6] Wuhan Polytech Univ, Wuhan 430023, Peoples R China
[7] Hubei Longzhong Lab, Xiangyang 441000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Cathode; Oxygen vacancy; Aqueous zinc-ion battery; Fast kinetics; Reaction mechanism; VANADIUM PENTOXIDE; CATHODE MATERIAL; HIGH-CAPACITY; PERFORMANCE; CHEMISTRY; ANODE; LIFE;
D O I
10.1016/j.jallcom.2022.165804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (AZIBs) are attractive alternatives to conventional battery technologies owing to their low-cost, safety and environmental friendliness. The development of AZIBs has thus far proceeded rapidly; however, finding suitable materials for AZIB cathodes with high capacity, long-cycle stability, fast reaction kinetics has proved challenging. In this study, a manganese vanadate precursor (Mn(0.04)V(2)O(5)middot1.17 H2O; MVO) was prepared using a simple hydrothermal method and calcined at a low temperature (250 degrees C) to generate oxygen vacancies (Mn(0.04)V(2)O(5-x)middot0.64 H2O; MVO-250). The presence of oxygen vacancies effectively provide active sites, increase surface reactivity to improve zinc-ion storage, and inhibit the dissolution of electrode materials in the electrolyte. Consequently, MVO-250 exhibits a superior specific capacity and long-cycle performance to MVO. Moreover, after 4000 cycles at 5 A g(-1), the discharge specific capacity of the MVO-250 electrode remain at 150 mA h g(-1), while that of MVO is only (76 mA h g(-1)). Owing to its high pseudocapacitance (90.5%) at 1.0 mV s(-1), MVO-250 has a higher zinc ion diffusion coefficient than MVO (77.2%). This research demonstrates the diverse potential applications prospect of the modification of AZIBs cathode materials with oxygen vacancies. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] 3D Oxygen-Defective Potassium Vanadate/Carbon Nanoribbon Networks as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Yang, Wang
    Dong, Liubing
    Yang, Wu
    Xu, Chengjun
    Shao, Guangjie
    Wang, Guoxiu
    SMALL METHODS, 2020, 4 (01)
  • [22] Engineering sulphur vacancy in VS2 as high performing zinc-ion batteries with high cyclic stability
    Yin, Bo-Si
    Zhang, Si-Wen
    Xiong, Ting
    Shi, Wen
    Ke, Ke
    Lee, Wee Siang Vincent
    Xue, Junmin
    Wang, Zhen-Bo
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (37) : 15951 - 15957
  • [23] Defect Engineering in Manganese-Based Oxides for Aqueous Rechargeable Zinc-Ion Batteries: A Review
    Xiong, Ting
    Zhang, Yaoxin
    Lee, Wee Siang Vincent
    Xue, Junmin
    ADVANCED ENERGY MATERIALS, 2020, 10 (34)
  • [24] Multi-Ion Engineering Strategies toward High Performance Aqueous Zinc-Based Batteries
    Yue, Jiasheng
    Chen, Shi
    Yang, Jingjing
    Li, Shuqiang
    Tan, Guoqiang
    Zhao, Ran
    Wu, Chuan
    Bai, Ying
    ADVANCED MATERIALS, 2024, 36 (02)
  • [25] Bimetallic Ion Intercalation Optimized the Performance of Hydrated Vanadate Cathodes for Aqueous Zinc Ion Batteries
    Xiao, An
    Zhou, Tengfei
    Xiang, Dan
    Zou, Sijia
    Zhang, Tian
    Zhang, Longhan
    Zhang, Qixiong
    Hou, Yafei
    Zhu, Yuejin
    Li, Weiping
    Zhang, Chaofeng
    Cuan, Jing
    ACS APPLIED NANO MATERIALS, 2025, 8 (07) : 3566 - 3574
  • [26] A Multi-Colored, Structure-Tolerant Vanadate Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Qian
    Ju, Shidi
    Zhang, Shaohua
    Xu, Shilong
    Zhang, Zhipan
    ADVANCED ENERGY MATERIALS, 2025,
  • [27] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875
  • [28] Boosted charge transfer in oxygen vacancy-rich K+ birnessite MnO2 for water oxidation and zinc-ion batteries
    Lin, MengXian
    Shao, Fuqiang
    Weng, Shuting
    Xiong, Shanshan
    Liu, Shuai
    Jiang, Shuyao
    Xu, Yanchao
    Jiao, Yang
    Chen, Jianrong
    ELECTROCHIMICA ACTA, 2021, 378
  • [29] Manganese hexacyanoferrate anchoring MnO2 with enhanced stability for aqueous zinc-ion batteries
    Chen, Junchen
    Liao, Li
    Sun, Bin
    Song, Xin
    Wang, Mingshan
    Guo, Bingshu
    Ma, Zhiyuan
    Yu, Bo
    Li, Xing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 903
  • [30] Reaction mechanisms for electrolytic manganese dioxide in rechargeable aqueous zinc-ion batteries
    Tran, Thuy Nguyen Thanh
    Jin, Susi
    Cuisinier, Marine
    Adams, Brian D.
    Ivey, Douglas G.
    SCIENTIFIC REPORTS, 2021, 11 (01)