Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar

被引:44
作者
Alonzo, Michael [1 ,2 ]
Morton, Douglas C. [1 ]
Cook, Bruce D. [1 ]
Andersen, Hans-Erik [3 ]
Babcock, Chad [4 ]
Pattison, Robert [5 ]
机构
[1] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Amer Univ, Dept Environm Sci, Washington, DC 20016 USA
[3] US Forest Serv, USDA, Pacific Northwest Res Stn, Seattle, WA USA
[4] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA
[5] US Forest Serv, USDA, Pacific Northwest Res Stn, Anchorage, AK USA
关键词
lidar; boreal forest; fire effects; fire carbon emissions; albedo; BURN SEVERITY; KENAI PENINSULA; NORTH-AMERICA; TIME-SERIES; LANDSAT; CLIMATE; DISTURBANCE; WILDFIRE; REGIME; PARAMETERS;
D O I
10.1088/1748-9326/aa6ade
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska's Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis [J].
Alonzo, Michael ;
Van Den Hoek, Jamon ;
Ahmed, Nabil .
SCIENTIFIC REPORTS, 2016, 6
[2]   Urban tree species mapping using hyperspectral and lidar data fusion [J].
Alonzo, Michael ;
Bookhagen, Bodo ;
Roberts, Dar A. .
REMOTE SENSING OF ENVIRONMENT, 2014, 148 :70-83
[3]   Identifying Santa Barbara's urban tree species from AVIRIS imagery using canonical discriminant analysis [J].
Alonzo, Mike ;
Roth, Keely ;
Roberts, Dar .
REMOTE SENSING LETTERS, 2013, 4 (05) :513-521
[4]   Post-fire carbon dioxide fluxes in the western Canadian boreal forest: evidence from towers, aircraft and remote sensing [J].
Amiro, BD ;
MacPherson, JI ;
Desjardins, RL ;
Chen, JM ;
Liu, J .
AGRICULTURAL AND FOREST METEOROLOGY, 2003, 115 (1-2) :91-107
[5]  
Andersen H E, 2009, W J AGR EC, V29, P95
[6]   Estimating forest canopy fuel parameters using LIDAR data [J].
Andersen, HE ;
McGaughey, RJ ;
Reutebuch, SE .
REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) :441-449
[7]  
[Anonymous], 2006, RMRSGTR164CD USDA FO
[8]   Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data [J].
Barrett, K. ;
Kasischke, E. S. ;
McGuire, A. D. ;
Turetsky, M. R. ;
Kane, E. S. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) :1494-1503
[9]   The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo [J].
Beck, Pieter S. A. ;
Goetz, Scott J. ;
Mack, Michelle C. ;
Alexander, Heather D. ;
Jin, Yufang ;
Randerson, James T. ;
Loranty, M. M. .
GLOBAL CHANGE BIOLOGY, 2011, 17 (09) :2853-2866
[10]   Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes [J].
Berg, Edward E. ;
Henry, J. David ;
Fastie, Christopher L. ;
De Volder, Andrew D. ;
Matsuoka, Steven M. .
FOREST ECOLOGY AND MANAGEMENT, 2006, 227 (03) :219-232