Development and Application of Hyperspectral Remote Sensing

被引:2
作者
Xing, Huimin [1 ,2 ,3 ,4 ]
Feng, Haikuan [1 ,2 ,3 ,4 ]
Fu, Jingying [1 ,2 ,3 ,4 ]
Xu, Xingang [1 ,2 ,3 ,4 ]
Yang, Guijun [1 ,2 ,3 ,4 ]
机构
[1] Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr PR China, Beijing 100097, Peoples R China
[2] Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
[3] Beijing Engn Res Ctr Agr Internet Things, Beijing 100097, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100083, Peoples R China
来源
COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, CCTA 2017, PT II | 2019年 / 546卷
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Hyperspectral remote sensing; Airborne; Space borne; Hyperspectral sensors; Plant ecology surveying; WATER-QUALITY RETRIEVAL; SPECTROMETER; ALGORITHMS; CLASSIFICATION; SPECTROSCOPY; REFLECTANCE; PREDICTION; COVER;
D O I
10.1007/978-3-030-06179-1_28
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Since the early 1960s, multispectral imagery has been served as the data source for earth observational remote sensing (RS) in the last thirty years; the advancement of sensor technology had made it accessible to colleting hundreds continues spectral bands-hyperspectral RS. Hyperspectral RS (HRS) is a new technique for observing the earth, which is different from the multi-spectral RS because of several hundreds of contiguous spectral bands. With a long history of development, HRS is widely used currently. This review details the development of HRS, data processing, characteristics, imaging mode of hyperspectral sensors and its applications, such as detecting and identifying the surface, monitoring agriculture and forest status, environmental studies, and military surveillance, etc.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 50 条
[41]   Potential Assessment of PRISMA Hyperspectral Imagery for Remote Sensing Applications [J].
Shaik, Riyaaz Uddien ;
Periasamy, Shoba ;
Zeng, Weiping .
REMOTE SENSING, 2023, 15 (05)
[42]   Clustering analysis as a basic tool for hyperspectral remote sensing image [J].
Xu, Han ;
Li, Xiaojuan ;
Gao, Xiaowei .
MIPPR 2011: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2011, 8006
[43]   Hyperspectral remote sensing for detecting geotechnical problems at Ray mine [J].
He, Jingping ;
Barton, Isabel .
ENGINEERING GEOLOGY, 2021, 292
[44]   Investigation into lossless hyperspectral image compression for satellite remote sensing [J].
Noor, Nor Rizuan Mat ;
Vladimirova, Tanya .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (14) :5072-5104
[45]   Estimation of Rice Canopy Nitrogen Concentration by Hyperspectral Remote Sensing [J].
Wang, Jingjing ;
Sun, Ling ;
Shi, Chunlin ;
Tian, Qingjiu .
2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2013, :52-55
[46]   An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework [J].
Hou, Weizhen ;
Wang, Jun ;
Xu, Xiaoguang ;
Reid, Jeffrey S. ;
Han, Dong .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 178 :400-415
[47]   Intrinsic Image Recovery From Remote Sensing Hyperspectral Images [J].
Jin, Xudong ;
Gu, Yanfeng ;
Liu, Tianzhu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01) :224-238
[48]   Development of deep learning-based hyperspectral remote sensing image unmixing [J].
Su Y. ;
Xu R. ;
Gao L. ;
Han Z. ;
Sun X. .
National Remote Sensing Bulletin, 2024, 28 (01) :1-19
[49]   Hyperspectral remote sensing protocol development for submerged aquatic vegetation in shallow water [J].
Bostater, CR ;
Ghir, T ;
Bassetti, L ;
Hall, C ;
Reyier, E ;
Lowers, R ;
Holloway-Adkins, K ;
Virnstein, R .
REMOTE SENSING OF THE OCEAN AND SEA ICE 2003, 2004, 5233 :199-215
[50]   Hyperspectral Imaging System: Development Aspects and Recent Trends [J].
Lodhi, Vaibhav ;
Chakravarty, Debashish ;
Mitra, Pabitra .
SENSING AND IMAGING, 2019, 20 (01)