Hierarchical probabilistic macromodeling for QCA circuits

被引:20
作者
Srivastava, Saket [1 ]
Bhanja, Sanjukta [1 ]
机构
[1] Univ S Florida, Dept Elect Engn, Tampa, FL 33620 USA
关键词
quantum-dot cellular automata; Bayesian networks; probabilistic computing; QCA computing; QCA macromodel;
D O I
10.1109/TC.2007.30
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the goal of building an hierarchical design methodology for quantum-dot cellular automata (QCA) circuits, we put forward a novel, theoretically sound, method for abstracting the behavior of circuit components in QCA circuit, such as majority logic, lines, wire-taps, cross-overs, inverters, and corners, using macromodels. Recognizing that the basic operation of QCA is probabilistic in nature, we propose probabilistic macromodels for standard QCA circuit elements based on conditional probability characterization, defined over the output states given the input states. Any circuit model is constructed by chaining together the individual logic element macromodels, forming a Bayesian network, defining a joint probability distribution over the whole circuit. We demonstrate three uses for these macromodel-based circuits. First, the probabilistic macromodels allow us to model the logical function of QCA circuits at an abstract level-the "circuit" level-above the current practice of layout level in a time and space efficient manner. We show that the circuit level model is orders of magnitude faster and requires less space than layout level models, making the design and testing of large QCA circuits efficient and relegating the costly full quantum-mechanical simulation of the temporal dynamics to a later stage in the design process. Second, the probabilistic macromodels abstract crucial device level characteristics such as polarization and low-energy error state configurations at the circuit level. We demonstrate how this macromodel-based circuit level representation can be used to infer the ground state probabilities, i.e., cell polarizations, a crucial QCA parameter. This allows us to study the thermal behavior of QCA circuits at a higher level of abstraction. Third, we demonstrate the use of these macromodels for error analysis. We show that low-energy state configurations of the macromodel circuit match those of the layout level, thus allowing us to isolate weak points in circuits design at the circuit level itself.
引用
收藏
页码:174 / 190
页数:17
相关论文
共 26 条
  • [1] Experimental demonstration of electron switching in a quantum-dot cellular automata (QCA) cell
    Amlani, I
    Orlov, AO
    Snider, GL
    Lent, CS
    Porod, W
    Bernstein, GH
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1999, 25 (1-2) : 273 - 278
  • [2] [Anonymous], 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4
  • [3] Estimation of switching activity in sequential circuits using dynamic Bayesian networks
    Bhanja, S
    Lingasubramanian, K
    Ranganathan, N
    [J]. 18TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: POWER AWARE DESIGN OF VLSI SYSTEMS, 2005, : 586 - 591
  • [4] BHANJA S, 2005, P IEEE NAN C, P444
  • [5] BHANJA S, 2005, P NSTI NAN C
  • [6] Cowell R. G., 1999, PROBABILISTIC NETWOR
  • [7] Incorporating standard CMOS design process methodologies into the QCA logic design process
    Henderson, SC
    Johnson, EW
    Janulis, JR
    Tougaw, PD
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2004, 3 (01) : 2 - 9
  • [8] High-resolution electron beam lithography and DNA nano-patterning for molecular QCA
    Hu, WC
    Sarveswaran, K
    Lieberman, M
    Bernstein, GH
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (03) : 312 - 316
  • [9] Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors
    Kummamuru, RK
    Orlov, AO
    Ramasubramaniam, R
    Lent, CS
    Bernstein, GH
    Snider, GL
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (09) : 1906 - 1913
  • [10] Molecular quantum-dot cellular automata
    Lent, CS
    Isaksen, B
    Lieberman, M
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (04) : 1056 - 1063