Glycerol Reforming for Hydrogen Production: A Review

被引:229
作者
Vaidya, Prakash D. [2 ]
Rodrigues, Alirio E. [1 ]
机构
[1] Univ Porto, Dept Chem Engn, Lab Separat & React Engn, Fac Engn, P-4200465 Oporto, Portugal
[2] Inst Chem Technol, Dept Chem Engn, Bombay, Maharashtra, India
关键词
Catalysts; Fuel cells; Glycerol reforming; Hydrogen production; OXYGENATED HYDROCARBONS; RENEWABLE HYDROGEN; STEAM; BIOMASS; CONVERSION; ETHANOL; GENERATION; CATALYST; ALKANES; MODEL;
D O I
10.1002/ceat.200900120
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Glycerol, which is obtained as a by-product in biodiesel production, represents a candidate source of hydrogen that is renewable. Its conversion into hydrogen can be achieved by a reforming process. In this article, the glycerol reforming reaction is reviewed. Different reforming processes for hydrogen production, viz. steam, aqueous, and autothermal reforming, are described in brief The thermodynamic analyses, which enable comparison with experimental studies, are considered. A discussion on experimental investigations over several catalysts is presented, too. Many reaction pathways are possible and some of them are dependent on the properties of the catalyst used. Generally, Ni, Pt, and Ru catalysts facilitate hydrogen production. The same catalysts are also effective for the reforming reaction of ethanol - another renewable resource for hydrogen. While ethanol steam reforming has been comprehensively reviewed by now, an overview on glycerol reforming is still missing. In this paper, an evaluation of the published studies is given to close this gap.
引用
收藏
页码:1463 / 1469
页数:7
相关论文
共 42 条
[1]   Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts [J].
Adhikari, Sushil ;
Fernando, Sandun D. ;
To, S. D. Filip ;
Bricka, R. Mark ;
Steele, Philip H. ;
Haryanto, Agus .
ENERGY & FUELS, 2008, 22 (02) :1220-1226
[2]   Hydrogen production from glycerin by steam reforming over nickel catalysts [J].
Adhikari, Sushil ;
Fernando, Sandun D. ;
Haryanto, Agus .
RENEWABLE ENERGY, 2008, 33 (05) :1097-1100
[3]   Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts [J].
Adhikari, Sushil ;
Fernando, Sandun ;
Haryanto, Agus .
CATALYSIS TODAY, 2007, 129 (3-4) :355-364
[4]   A thermodynamic analysis of hydrogen production by steam reforming of glycerol [J].
Adhikari, Sushil ;
Fernando, Sandun ;
Gwaltney, Steven R. ;
To, S. D. Filip ;
Bricka, R. Mark ;
Steele, Philip H. ;
Haryanto, Agus .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (14) :2875-2880
[5]   A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin [J].
Adhikari, Sushil ;
Fernando, Sandun ;
Haryanto, Agus .
ENERGY & FUELS, 2007, 21 (04) :2306-2310
[6]   Development of glycerol/O2 biofuel cell [J].
Arechederra, Robert L. ;
Treu, Becky L. ;
Minteer, Shelley D. .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :156-161
[7]   Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J].
Cortright, RD ;
Davda, RR ;
Dumesic, JA .
NATURE, 2002, 418 (6901) :964-967
[8]   Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes [J].
Czernik, S ;
French, R ;
Feik, C ;
Chornet, E .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (17) :4209-4215
[9]   Renewable hydrogen by autothermal steam reforming of volatile carbohydrates [J].
Dauenhauer, P. J. ;
Salge, J. R. ;
Schmidt, L. D. .
JOURNAL OF CATALYSIS, 2006, 244 (02) :238-247
[10]   A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J].
Davda, RR ;
Shabaker, JW ;
Huber, GW ;
Cortright, RD ;
Dumesic, JA .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :171-186