Advances in the pretreatment of brown macroalgae for biogas production

被引:87
作者
Thompson, Terrell M. [1 ]
Young, Brent R. [1 ]
Baroutian, Saeid [1 ]
机构
[1] Univ Auckland, Dept Chem & Mat Engn, Auckland 1010, New Zealand
关键词
Brown macroalgae; Seaweeds; Anaerobic digestion; Pretreatment; Biogas; THERMO-ACIDIC PRETREATMENT; ANAEROBIC-DIGESTION; MECHANICAL PRETREATMENT; HYDROTHERMAL PRETREATMENT; LIGNOCELLULOSIC BIOMASS; BIOLOGICAL PRETREATMENT; MICROALGAL BIOMASS; METHANE PRODUCTION; MARINE MACROALGAE; ALGAL BIOMASS;
D O I
10.1016/j.fuproc.2019.106151
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Brown macroalgae are an attractive, untapped resource and a favourable alternative for conventional fossil fuels, given their low lignin and high polysaccharide content. However, the restricted bioavailability of structurally complex carbohydrates for digestion, results in a low biomethane potential. This paper reviews the various pretreatment technologies explored to optimise saccharification prior to fermentation, categorised as: physical, biological, chemical, thermal and a combination of methods. A techno-economic assessment was conducted to evaluate the commercial viability of each process. Hydrothermal pretreatment proves the most promising technique for brown algae application, since it improves methane productivity, carries a net positive energy balance and generates a bio-fertilizer, while mitigating greenhouse gas emissions. Pilot scale research is necessary to evaluate the feasibility of full-scale implementation for brown algae bioconversion. A case study of the Cambi (TM) process concludes the paper as it exemplifies the successful utilisation of hydrothermal pretreatment for sewage sludge biogas production.
引用
收藏
页数:12
相关论文
共 103 条
[1]   Review of fossil fuels and future energy technologies [J].
Abas, N. ;
Kalair, A. ;
Khan, N. .
FUTURES, 2015, 69 :31-49
[2]   Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments [J].
Adams, Jessica M. ;
Gallagher, Joseph A. ;
Donnison, Iain S. .
JOURNAL OF APPLIED PHYCOLOGY, 2009, 21 (05) :569-574
[3]   Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment [J].
Alzate, M. E. ;
Munoz, R. ;
Rogalla, F. ;
Fdz-Polanco, F. ;
Perez-Elvira, S. I. .
BIORESOURCE TECHNOLOGY, 2012, 123 :488-494
[4]   Pyrolysis behaviour of the main carbohydrates of brown macro-algae [J].
Anastasakis, K. ;
Ross, A. B. ;
Jones, J. M. .
FUEL, 2011, 90 (02) :598-607
[5]  
[Anonymous], 2010, INT J AGR BIOL ENG
[6]  
[Anonymous], 2013, ADV BIOFUELS BIOPROD
[7]   Pretreatment methods to enhance anaerobic digestion of organic solid waste [J].
Ariunbaatar, Javkhlan ;
Panico, Antonio ;
Esposito, Giovanni ;
Pirozzi, Francesco ;
Lens, Piet N. L. .
APPLIED ENERGY, 2014, 123 :143-156
[8]   In vitro antioxidant properties of crude extracts and compounds from brown algae [J].
Balboa, Elena M. ;
Conde, Enma ;
Moure, Andres ;
Falque, Elena ;
Dominguez, Herminia .
FOOD CHEMISTRY, 2013, 138 (2-3) :1764-1785
[9]   Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover [J].
Baral, Nawa Raj ;
Shah, Ajay .
BIORESOURCE TECHNOLOGY, 2017, 232 :331-343
[10]   Thermo-Acidic Pretreatment of Beach Macroalgae from Rugen to Optimize Biomethane Production-Double Benefit with Simultaneous Bioenergy Production and Improvement of Local Beach and Waste Management [J].
Barbot, Yann Nicolas ;
Thomsen, Laurenz ;
Benz, Roland .
MARINE DRUGS, 2015, 13 (09) :5681-5705