Probabilistic brain atlas encoding using Bayesian inference

被引:0
作者
Van Leemput, Koen [1 ]
机构
[1] Univ Helsinki, Cent Hosp, Helsinki Med Imaging Ctr, Helsinki, Finland
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 1 | 2006年 / 4190卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper addresses the problem of creating probabilistic brain atlases from manually labeled training data. We propose a general mesh-based atlas representation, and compare different atlas models by evaluating their posterior probabilities and the posterior probabilities of their parameters. Using such a Baysian framework, we show that the widely used "average" brain atlases constitute relatively poor priors, partly because they tend to overfit the training data, and partly because they do not allow to align corresponding anatomical features across datasets. We also demonstrate that much more powerful representations can be built using content-adaptive meshes that incorporate non-rigid deformation field models. We believe extracting optimal prior probability distributions from training data is crucial in light of the central role priors play in many automated brain MRI analysis techniques.
引用
收藏
页码:704 / 711
页数:8
相关论文
共 10 条
  • [1] Unified segmentation
    Ashburner, J
    Friston, KJ
    [J]. NEUROIMAGE, 2005, 26 (03) : 839 - 851
  • [2] D'Agostino E, 2004, LECT NOTES COMPUT SC, V3216, P745
  • [3] De Craene M, 2004, LECT NOTES COMPUT SC, V3216, P655
  • [4] Sequence-independent segmentation of magnetic resonance images
    Fischl, B
    Salat, DH
    van der Kouwe, AJW
    Makris, N
    Ségonne, F
    Quinn, BT
    Dale, AM
    [J]. NEUROIMAGE, 2004, 23 : S69 - S84
  • [5] HOPPE H, 1996, ANN C SERIES, P99
  • [6] LORENZEN P, 2006, IN PRESS MED IMAGE A
  • [7] Pohl KM, 2002, LECT NOTES COMPUT SC, V2488, P564, DOI 10.1007/3-540-45786-0_70
  • [8] Automatic segmentation of MR images of the developing newborn brain
    Prastawa, M
    Gilmore, JH
    Lin, WL
    Gerig, G
    [J]. MEDICAL IMAGE ANALYSIS, 2005, 9 (05) : 457 - 466
  • [9] Automated model-based tissue classification of MR images of the brain
    Van Leemput, K
    Maes, F
    Vandermeulen, D
    Suetens, P
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (10) : 897 - 908
  • [10] Automatic "pipeline" analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis
    Zijdenbos, AP
    Forghani, R
    Evans, AC
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (10) : 1280 - 1291