Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams

被引:15
作者
Khonina, Svetlana N. [1 ,2 ]
Porfirev, Alexey P. [1 ,2 ]
Ustinov, Andrey, V [1 ]
Butt, Muhammad Ali [2 ]
机构
[1] FSRC Crystallog & Photon RAS, IPSI RAS, Molodogvardeyskaya 151, Samara 443001, Russia
[2] Samara Natl Res Univ, Dept Tech Cybernet, MoskovskoyeShosse 34, Samara 443086, Russia
基金
俄罗斯基础研究基金会;
关键词
optical vortex; autofocusing beams; rotating beams; transverse energy flow density; LASER-BEAMS; AIRY BEAMS; ANGULAR-MOMENTUM; LIGHT; SPIN; MICROPARTICLES; SUPERPOSITION; PROPAGATION;
D O I
10.3390/mi12030297
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Optical vortex (OV) beams are widely used for the generation of light fields with transverse energy flow inducing orbital motion of the nano- and microparticles in the transverse plane. Here, we present some new modifications of OV beams with autofocusing properties for shaping complex transverse energy flow distributions varying in space. The angular component of the complex amplitude of these beams is defined by the superpositions of OV beams with different topological charges. The proposed approach provides a convenient method to control the three-dimensional structure of the generated autofocusing OV beams. The control of the transverse distribution of an autofocusing beam provides a wide variety of generated fields with both rotating and periodic properties, which can be used in the field of laser manipulation and laser material processing. Thus, the obtained numerical results predict different types of motion of the trapped particles for the designed OV autofocusing beams. The experimental results agree with modeling results and demonstrate the principal possibility to shape such laser beams using spatial light modulators.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Using phase diffraction optical elements to shape and select laser beams consisting of a superposition of an arbitrary number of angular harmonics [J].
Almazov, AA ;
Khonina, SN ;
Kollyar, VV .
JOURNAL OF OPTICAL TECHNOLOGY, 2005, 72 (05) :391-399
[2]  
Andrews D.L., 2011, STRUCTURED LIGHT ITS, P400
[3]   Transverse energy flows in vectorial fields of paraxial beams with singularities [J].
Bekshaev, A. Ya. ;
Soskin, M. S. .
OPTICS COMMUNICATIONS, 2007, 271 (02) :332-348
[4]   Internal energy flows and instantaneous field of a monochromatic paraxial light beam [J].
Bekshaev, Aleksandr Ya. .
APPLIED OPTICS, 2012, 51 (10) :C13-C16
[5]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[6]   Tornado waves [J].
Brimis, Apostolos ;
Makris, Konstantinos G. ;
Papazoglou, Dimitris G. .
OPTICS LETTERS, 2020, 45 (02) :280-283
[7]   Optical trapping and rotating of micro-particles using the circular Airy vortex beams [J].
Chen, Musheng ;
Huang, Sujuan ;
Liu, Xianpeng ;
Chen, Yi ;
Shao, Wei .
APPLIED PHYSICS B-LASERS AND OPTICS, 2019, 125 (10)
[8]   Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams [J].
Chen, Xingyu ;
Deng, Dongmei ;
Zhuang, Jingli ;
Yang, Xiangbo ;
Liu, Hongzhan ;
Wang, Guanghui .
APPLIED OPTICS, 2018, 57 (28) :8418-8423
[9]   Pre-engineered abruptly autofocusing beams [J].
Chremmos, Ioannis ;
Efremidis, Nikolaos K. ;
Christodoulides, Demetrios N. .
OPTICS LETTERS, 2011, 36 (10) :1890-1892
[10]   Abruptly autofocusing vortex beams [J].
Davis, Jeffrey A. ;
Cottrell, Don M. ;
Sand, David .
OPTICS EXPRESS, 2012, 20 (12) :13302-13310