Autonomous Wideband Piezoelectric Energy Harvesting Utilizing a Resonant Inverter

被引:14
作者
Stein, Aaron L. F. [1 ]
Hofmann, Heath F. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
Energy harvesting; impedance matching; piezoelectricity; power electronics; resonant inverters; WIRELESS SENSOR NETWORKS; GENERATORS; CIRCUIT; DEVICES;
D O I
10.1109/TPEL.2016.2616301
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Piezoelectric energy harvesters generate electrical power from ambient mechanical vibrations, making these vibrations a viable energy source for powering wireless sensor and identifier nodes. In order to harvest an appreciable amount of power, piezoelectric devices are typically inserted into high-Q mechanical resonant structures that significantly limit their harvesting bandwidth. The dynamic active energy harvesting method has been proposed as a way to widen the bandwidth of resonant piezoelectric energy harvesters; however, an autonomous design has not yet been demonstrated. This paper demonstrates the first autonomous implementation of this method. This was accomplished through the use of a resonant inverter topology in combination with a low-power analog control circuit design that reduces the computational demand of the microcontroller. Experimental results using the Mide Volture V20w piezoelectric device show that the harvested power is up to twice that of the adaptive rectifier method. These results include previously ignored loss mechanisms such as control losses, gating losses, and phase detection losses, making this system the first autonomous energy harvesting system of its kind.
引用
收藏
页码:6178 / 6187
页数:10
相关论文
共 25 条
[1]   Wireless sensor networks: a survey [J].
Akyildiz, IF ;
Su, W ;
Sankarasubramaniam, Y ;
Cayirci, E .
COMPUTER NETWORKS, 2002, 38 (04) :393-422
[2]   Single crystals and nonlinear process for outstanding vibration-powered electrical generators [J].
Laboratoire de Génie Electrique et Ferroélectricité, INSA de Lyon, 69621 Villeurbanne, France ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
IEEE Trans Ultrason Ferroelectr Freq Control, 2006, 4 (673-683) :673-683
[3]   Piezoelectric energy harvesting using a synchronized switch technique [J].
Badel, Adrien ;
Guyomar, Daniel ;
Lefeuvre, Elie ;
Richard, Claude .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2006, 17 (8-9) :831-839
[4]   An active piezoelectric energy extraction method for pressure energy harvesting [J].
Deterre, M. ;
Lefeuvre, E. ;
Dufour-Gergam, E. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (08)
[5]  
Fedder G.K., 2015, Resonant MEMS: Fundamentals, Implementation, and Application
[6]   Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting [J].
Kong, Na ;
Ha, Dong Sam ;
Erturk, Alper ;
Inman, Daniel J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (13) :1293-1302
[7]   Frequency Self-tuning Scheme for Broadband Vibration Energy Harvesting [J].
Lallart, Mickael ;
Anton, Steven R. ;
Inman, Daniel J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (09) :897-906
[8]   A comparison between several vibration-powered piezoelectric generators for standalone systems [J].
Lefeuvre, E ;
Badel, A ;
Richard, C ;
Petit, L ;
Guyomar, D .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 126 (02) :405-416
[9]   Materials, structures and power interfaces for efficient piezoelectric energy harvesting [J].
Lefeuvre, Elie ;
Sebald, Gael ;
Guyomar, Daniel ;
Lallart, Mickael ;
Richard, Claude .
JOURNAL OF ELECTROCERAMICS, 2009, 22 (1-3) :171-179
[10]   Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload [J].
Leland, Eli S. ;
Wright, Paul K. .
SMART MATERIALS AND STRUCTURES, 2006, 15 (05) :1413-1420