On weighted weak type maximal inequalities for martingales

被引:8
作者
Kikuchi, M [1 ]
机构
[1] Toyama Univ, Dept Math, Toyama 9308555, Japan
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2003年 / 6卷 / 01期
关键词
weak type inequality; martingale; weight; Young function;
D O I
10.7153/mia-06-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Phi be a Young function and (u, v) a pair of weights on a probability space. We consider the inequality sup Phi(lambda) E[ u :{Mf > lambda}] less than or equal to E[Phi (C\.f(infinity)\) v] lambda is an element of (0,infinity) for martingales f = (f(n))(nis an element ofZ+) , where Mf = sup(nis an element ofZ+) \fn\ and f(infinity) = lim(n) f(n) a.s. We give some necessary and sufficient conditions for this inequality to hold, and extend Uchiyama's result.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 5 条
[1]   WEIGHTED L-PHI INTEGRAL-INEQUALITIES FOR OPERATORS OF HARDY TYPE [J].
BLOOM, S ;
KERMAN, R .
STUDIA MATHEMATICA, 1994, 110 (01) :35-52
[2]  
Bonami A., 1979, LECT NOTES MATH, V721, P294
[3]  
Krasnoselskii M.A., CONVEX FUNCTIONS ORL
[4]  
LEVEU J, DISCRETE PARAMETER M
[5]  
Uchiyama Akihito, 1978, TOHOKU MATH J, V30, P463, DOI [10.2748/tmj/1178229981, DOI 10.2748/TMJ/1178229981]