Leveraging Single-Cell RNA-seq Data to Uncover the Association Between Cell Type and Chronic Liver Diseases

被引:4
作者
Ye, Xiangyu [1 ]
Wei, Julong [2 ]
Yue, Ming [3 ]
Wang, Yan [1 ]
Chen, Hongbo [4 ]
Zhang, Yongfeng [4 ]
Wang, Yifan [4 ]
Zhang, Meiling [4 ]
Huang, Peng [1 ]
Yu, Rongbin [1 ]
机构
[1] Nanjing Med Univ, Sch Publ Hlth, Ctr Global Hlth, Dept Epidemiol, Nanjing, Peoples R China
[2] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Nanjing Med Univ, Affiliated Hosp 1, Dept Infect Dis, Nanjing, Peoples R China
[4] Jiangsu Univ, Dept Infect Dis, Jurong Hosp, Jurong, Peoples R China
基金
中国国家自然科学基金;
关键词
chronic liver diseases; GWAS; scRNA-seq; integrated analysis; cell type; GENOME-WIDE ASSOCIATION; INJURY; GENES;
D O I
10.3389/fgene.2021.637322
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background Components of liver microenvironment is complex, which makes it difficult to clarify pathogenesis of chronic liver diseases (CLD). Genome-wide association studies (GWASs) have greatly revealed the role of host genetic background in CLD pathogenesis and prognosis, while single-cell RNA sequencing (scRNA-seq) enables interrogation of the cellular diversity and function of liver tissue at unprecedented resolution. Here, we made integrative analysis on the GWAS and scRNA-seq data of CLD to uncover CLD-related cell types and provide clues for understanding on the pathogenesis. Methods We downloaded three GWAS summary data and three scRNA-seq data on CLD. After defining the cell types for each scRNA-seq data, we used RolyPoly and LDSC-cts to integrate the GWAS and scRNA-seq. In addition, we analyzed one scRNA-seq data without association to CLD to validate the specificity of our findings. Results After processing the scRNA-seq data, we obtain about 19,002-32,200 cells and identified 10-17 cell types. For the HCC analysis, we identified the association between B cell and HCC in two datasets. RolyPoly also identified the association, when we integrated the two scRNA-seq datasets. In addition, we also identified natural killer (NK) cell as HCC-associated cell type in one dataset. In specificity analysis, we identified no significant cell type associated with HCC. As for the cirrhosis analysis, we obtained no significant related cell type. Conclusion In this integrative analysis, we identified B cell and NK cell as HCC-related cell type. More attention and verification should be paid to them in future research.
引用
收藏
页数:10
相关论文
共 53 条
  • [1] A human liver cell atlas reveals heterogeneity and epithelial progenitors
    Aizarani, Nadim
    Saviano, Antonio
    Sagar
    Mailly, Laurent
    Durand, Sarah
    Herman, Josip S.
    Pessaux, Patrick
    Baumert, Thomas F.
    Gruen, Dominic
    [J]. NATURE, 2019, 572 (7768) : 199 - 204
  • [2] [Anonymous], 1991, CWI Q
  • [3] [Anonymous], 2015, Nature, DOI DOI 10.1038/NATURE15393
  • [4] Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort
    Anstee, Quentin M.
    Darlay, Rebecca
    Cockell, Simon
    Meroni, Marica
    Govaere, Olivier
    Tiniakos, Dina
    Burt, Alastair D.
    Bedossa, Pierre
    Palmer, Jeremy
    Liu, Yang-Lin
    Aithal, Guruprasad P.
    Allison, Michael
    Yki-Jarvinen, Hannele
    Vacca, Michele
    Dufour, Jean-Francois
    Invernizzi, Pietro
    Prati, Daniele
    Ekstedt, Mattias
    Kechagias, Stergios
    Francque, Sven
    Petta, Salvatore
    Bugianesi, Elisabetta
    Clement, Karine
    Ratziu, Vlad
    Schattenberg, Joern M.
    Valenti, Luca
    Day, Christopher P.
    Cordell, Heather J.
    Daly, Ann K.
    [J]. JOURNAL OF HEPATOLOGY, 2020, 73 (03) : 505 - 515
  • [5] Burden of liver diseases in the world
    Asrani, Sumeet K.
    Devarbhavi, Harshad
    Eaton, John
    Kamath, Patrick S.
    [J]. JOURNAL OF HEPATOLOGY, 2019, 70 (01) : 151 - 171
  • [6] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995
  • [7] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Butler, Andrew
    Hoffman, Paul
    Smibert, Peter
    Papalexi, Efthymia
    Satija, Rahul
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 411 - +
  • [8] Inferring Relevant Cell Types for Complex Traits by Using Single-Cell Gene Expression
    Calderon, Diego
    Bhaskar, Anand
    Knowles, David A.
    Golan, David
    Raj, Towfique
    Fu, Audrey Q.
    Pritchard, Jonathan K.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (05) : 686 - 699
  • [9] An atlas of genetic associations in UK Biobank
    Canela-Xandri, Oriol
    Rawlik, Konrad
    Tenesa, Albert
    [J]. NATURE GENETICS, 2018, 50 (11) : 1593 - +
  • [10] Second-generation PLINK: rising to the challenge of larger and richer datasets
    Chang, Christopher C.
    Chow, Carson C.
    Tellier, Laurent C. A. M.
    Vattikuti, Shashaank
    Purcell, Shaun M.
    Lee, James J.
    [J]. GIGASCIENCE, 2015, 4