Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose

被引:55
作者
Santoso, Shella Permatasari [1 ,2 ]
Lin, Shin-Ping [3 ]
Wang, Tan-Ying [4 ,5 ]
Ting, Yuwen [4 ]
Hsieh, Chang-Wei [6 ]
Yu, Roch-Chui [4 ]
Angkawijaya, Artik Elisa [7 ]
Soetaredjo, Felycia Edi [1 ,2 ]
Hsu, Hsien-Yi [8 ,9 ,10 ]
Cheng, Kuan-Chen [4 ,5 ,11 ,12 ]
机构
[1] Widya Mandala Surabaya Catholic Univ, Chem Engn Dept, 37 Kalijudan Rd, Surabaya 60114, East Java, Indonesia
[2] Natl Taiwan Univ Sci & Technol, Chem Engn Dept, 43,Sec 4,Keelung Rd, Taipei 10607, Taiwan
[3] Taipei Med Univ, Sch Food Safety, 250 Wuxing St, Taipei 11042, Taiwan
[4] Natl Taiwan Univ, Inst Food Sci & Technol, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Inst Biotechnol, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[6] Natl Chung Hsing Univ, Dept Food Sci & Biotechnol, 145 Xingda Rd, Taichung 40227, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, 43,Sec 4,Keelung Rd, Taipei 10607, Taiwan
[8] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[9] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon Tong, Hong Kong, Peoples R China
[10] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[11] China Med Univ, China Med Univ Hosp, Dept Med Res, 91 Hsueh Shih Rd, Taichung 40402, Taiwan
[12] Asia Univ, Dept Optometry, 500 Lioufeng Rd, Taichung 41354, Taiwan
关键词
Pineapple peel waste; Atmospheric cold plasma; Bacterial cellulose;
D O I
10.1016/j.ijbiomac.2021.01.169
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Toxic compounds in pineapple peel waste hydrolysate (PPWH), namely formic acid, 5-hydroxymethylfurfural (HMF), and furfural, are the major predicament in its utilization as a carbon source for bacterial cellulose (BC) fermentation. A rapid detoxification procedures using atmospheric cold plasma (ACP) technique were employed to reduce the toxic compounds. ACP treatment allows the breakdown of toxic compounds without causing excessive breakdown of sugars. Herein, the performance of two available laboratory ACP reactors for PPWH detoxification was being demonstrated. ACP-reactor-1 (R1) runs on plasma power of 80-200Wwith argon (Ar) plasma source, while ACP-reactor-2 (R2) runs at 500-600Wwith air plasma source. Treatment in R1, at 200Wfor 15min, results in 74.06%, 51.38%, and 21.81% reduction of furfural, HMF, and formic acid. Treatment in R2 at 600Wgives 45.05%, 32.59%, and 60.41% reductions of furfural, HMF, and formic acid. The BC yield from the fermentation of Komagateibacter xylinus in the R1-treated PPWH, R2-treated PPWH, and untreated-PPWH is 2.82, 3.82, and 2.97 g/L, respectively. The results show that ACP treatment provides a novel detoxified strategy in achieving agricultural waste hydrolysate reuse in fermentation. Furthermore, the results also imply that untreated PPWH can be an inexpensive and sustainable resource for fermentation media supplementation. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:526 / 534
页数:9
相关论文
共 39 条
[1]   Pineapple Agroindustrial Residues for the Production of High Value Bacterial Cellulose with Different Morphologies [J].
Algar, Itxaso ;
Fernandes, Susana C. M. ;
Mondragon, Gurutz ;
Castro, Cristina ;
Garcia-Astrain, Clara ;
Gabilondo, Nagore ;
Retegi, Alona ;
Eceiza, Arantxa .
JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (01)
[2]   Waste Management through Composting: Challenges and Potentials [J].
Ayilara, Modupe Stella ;
Olanrewaju, Oluwaseyi Samuel ;
Babalola, Olubukola Oluranti ;
Odeyemi, Olu .
SUSTAINABILITY, 2020, 12 (11)
[3]   Current progress on the production, modification, and applications of bacterial cellulose [J].
Blanco Parte, Francisco German ;
Santoso, Shella Permatasari ;
Chou, Chih-Chan ;
Verma, Vivek ;
Wang, Hsueh-Ting ;
Ismadji, Suryadi ;
Cheng, Kuan-Chen .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2020, 40 (03) :397-414
[4]   Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source [J].
Cheng, Zheng ;
Yang, Rendang ;
Liu, Xu ;
Liu, Xiao ;
Chen, Hua .
BIORESOURCE TECHNOLOGY, 2017, 234 :8-14
[5]   Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation [J].
Dubey, Swati ;
Singh, Jyoti ;
Singh, R. P. .
BIORESOURCE TECHNOLOGY, 2018, 247 :73-80
[6]   Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus [J].
Fan, Xin ;
Gao, Yue ;
He, Wanying ;
Hu, Hao ;
Tian, Ming ;
Wang, Kexing ;
Pan, Siyi .
CARBOHYDRATE POLYMERS, 2016, 151 :1068-1072
[7]   Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains [J].
Feizollahi, Ehsan ;
Iqdiam, Basheer ;
Vasanthan, Thava ;
Thilakarathna, Malinda S. ;
Roopesh, M. S. .
APPLIED SCIENCES-BASEL, 2020, 10 (10)
[8]   Idealized powder diffraction patterns for cellulose polymorphs [J].
French, Alfred D. .
CELLULOSE, 2014, 21 (02) :885-896
[9]   Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends [J].
Gavahian, Mohsen ;
Cullen, P. J. .
FOOD REVIEWS INTERNATIONAL, 2020, 36 (02) :193-214
[10]   Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends [J].
Gavahian, Mohsen ;
Khaneghah, Amin Mousavi .
CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2020, 60 (09) :1581-1592