Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes

被引:89
作者
Dey, Swati [1 ]
Sidor, Agnieszka [1 ]
O'Rourke, Brian [1 ]
机构
[1] Johns Hopkins Univ, Dept Med, Div Cardiol, 720 Rutland Ave,1060 Ross Bldg, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
antioxidant; cell metabolism; glutathione peroxidase; mitochondria; peroxiredoxin; reactive oxygen species (ROS); redox regulation; thioredoxin; thioredoxin reductase; NADPH; MITOCHONDRIAL THIOREDOXIN; GLUTATHIONE-PEROXIDASE; CARDIOVASCULAR EVENTS; OXIDATIVE STRESS; TARGET PROTEINS; PEROXIREDOXIN; VITAMIN-E; IN-VIVO; REDOX; CATALASE;
D O I
10.1074/jbc.M116.726968
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative stress arises from an imbalance in the production and scavenging rates of reactive oxygen species (ROS) and is a key factor in the pathophysiology of cardiovascular disease and aging. The presence of parallel pathways and multiple intracellular compartments, each having its own ROS sources and antioxidant enzymes, complicates the determination of the most important regulatory nodes of the redox network. Here we quantified ROS dynamics within specific intracellular compartments in the cytosol and mitochondria and determined which scavenging enzymes exert the most control over antioxidant fluxes in H9c2 cardiac myoblasts. We used novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensor domains to measure H2O2 or oxidized glutathione. Using genetic manipulation in heart-derived H9c2 cells, we explored the contribution of specific antioxidant enzymes to ROS scavenging and glutathione redox potential within each intracellular compartment. Our findings reveal that antioxidant flux is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. Moreover, ROS scavenging by mitochondria significantly contributes to cytoplasmic ROS handling. The findings provide fundamental information about the control of ROS scavenging by the redox network and suggest novel interventions for circumventing oxidative stress in cardiac cells.
引用
收藏
页码:11185 / 11197
页数:13
相关论文
共 67 条
[1]   Redox-optimized ROS balance: A unifying hypothesis [J].
Aon, M. A. ;
Cortassa, S. ;
O'Rourke, B. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 (6-7) :865-877
[2]   Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status [J].
Aon, Miguel A. ;
Cortassa, Sonia ;
Maack, Christoph ;
O'Rourke, Brian .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (30) :21889-21900
[3]   Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study [J].
Aon, Miguel Antonio ;
Stanley, Brian Alan ;
Sivakumaran, Vidhya ;
Kembro, Jackelyn Melissa ;
O'Rourke, Brian ;
Paolocci, Nazareno ;
Cortassa, Sonia .
JOURNAL OF GENERAL PHYSIOLOGY, 2012, 139 (06) :479-491
[4]   Mitochondria, oxidants, and aging [J].
Balaban, RS ;
Nemoto, S ;
Finkel, T .
CELL, 2005, 120 (04) :483-495
[5]   The Mitochondrial-Targeted Compound SS-31 Re-Energizes Ischemic Mitochondria by Interacting with Cardiolipin [J].
Birk, Alexander V. ;
Liu, Shaoyi ;
Soong, Yi ;
Mills, William ;
Singh, Pradeep ;
Warren, J. David ;
Seshan, Surya V. ;
Pardee, Joel D. ;
Szeto, Hazel H. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2013, 24 (08) :1250-1261
[6]   Endogenous glutathione adducts [J].
Blair, Ian A. .
CURRENT DRUG METABOLISM, 2006, 7 (08) :853-872
[7]   Reduction of Early Reperfusion Injury With the Mitochondria-Targeting Peptide Bendavia [J].
Brown, David A. ;
Hale, Sharon L. ;
Baines, Christopher P. ;
del Rio, Carlos L. ;
Hamlin, Robert L. ;
Yueyama, Yukie ;
Kijtawornrat, Anusak ;
Yeh, Steve T. ;
Frasier, Chad R. ;
Stewart, Luke M. ;
Moukdar, Fatiha ;
Shaikh, Saame Raza ;
Fisher-Wellman, Kelsey H. ;
Neufer, P. Darrell ;
Kloner, Robert A. .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS, 2014, 19 (01) :121-132
[8]   Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated [J].
Brown, Kristin K. ;
Eriksson, Sofi E. ;
Arner, Elias S. J. ;
Hampton, Mark B. .
FREE RADICAL BIOLOGY AND MEDICINE, 2008, 45 (04) :494-502
[9]   Redox Signaling in Cardiac Physiology and Pathology [J].
Burgoyne, Joseph R. ;
Mongue-Din, Heloise ;
Eaton, Philip ;
Shah, Ajay M. .
CIRCULATION RESEARCH, 2012, 111 (08) :1091-1106
[10]   Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework [J].
Calabrese, Edward J. ;
Bachmann, Kenneth A. ;
Bailer, A. John ;
Bolger, P. Michael ;
Borak, Jonathan ;
Cai, Lu ;
Cedergreen, Nina ;
Cherian, M. George ;
Chiueh, Chuang C. ;
Clarkson, Thomas W. ;
Cook, Ralph R. ;
Diamond, David M. ;
Doolittle, David J. ;
Dorato, Michael A. ;
Duke, Stephen O. ;
Feinendegen, Ludwig ;
Gardner, Donald E. ;
Hart, Ronald W. ;
Hastings, Kenneth L. ;
Hayes, A. Wallace ;
Hoffmann, George R. ;
Ives, John A. ;
Jaworowski, Zbigniew ;
Johnson, Thomas E. ;
Jonas, Wayne B. ;
Kaminski, Norbert E. ;
Keller, John G. ;
Klaunig, James E. ;
Knudsen, Thomas B. ;
Kozumbo, Walter J. ;
Lettleri, Teresa ;
Liu, Shu-Zheng ;
Maisseu, Andre ;
Maynard, Kenneth I. ;
Masoro, Edward J. ;
McClellan, Roger O. ;
Mehendale, Harlhara M. ;
Mothersill, Carmel ;
Newlin, David B. ;
Nigg, Herbert N. ;
Oehme, Frederick W. ;
Phalen, Robert F. ;
Philbert, Martin A. ;
Rattan, Suresh I. S. ;
Riviere, Jim E. ;
Rodricks, Joseph ;
Sapolsky, Robert M. ;
Scott, Bobby R. ;
Seymour, Colin ;
Sinclair, David A. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2007, 222 (01) :122-128