A Case Study on the Influence of Substitutes on Interlayer Stacking of 2D Covalent Organic Frameworks

被引:41
|
作者
Fan, Yu [1 ,2 ]
Wen, Qiang [1 ]
Zhan, Tian-Guang [1 ]
Qi, Qiao-Yan [1 ]
Xu, Jia-Qiang [2 ]
Zhao, Xin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Organ Chem, CAS Key Lab Synthet & Self Assembly Chem Organ Fu, 345 Lingling Rd, Shanghai 200032, Peoples R China
[2] Shanghai Univ, NEST Lab, Dept Chem, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent organic frameworks; inclined stacking; interlayer stacking; steric repulsion; two-dimensional; GAS-STORAGE APPLICATIONS; BUILDING-BLOCKS; ENERGY-STORAGE; DRUG-DELIVERY; CRYSTALLINE; CONSTRUCTION; CATALYSIS; PORES;
D O I
10.1002/chem.201700915
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interlayer stacking of 2D covalent organic frameworks (COFs) plays a crucial role in determining not only the geometry of channels inside COFs but also the mobility of carrier transport between COF layers. However, though topological structures of 2D COFs monolayers can be precisely predicted through the structures of building blocks, factors affecting their interlayer stacking remain poorly understood. In this work, a truxene-based building block on which six methyl groups are introduced was designed. The condensation of it with 1,4-diaminobenzene or benzidine afforded 2D COFs with the methyl groups extending out-of-plane of the layers. A significant influence of the methyl groups on interlayer stacking of the COFs was revealed by the adoption of inclined packing of monolayers, which has never been experimentally observed before. This unprecedented stacking manner was confirmed by powder X-ray diffraction analysis, pore-size distribution analysis, and TEM investigation.
引用
收藏
页码:5668 / 5672
页数:5
相关论文
共 50 条
  • [41] Flatbands in 2D boroxine-linked covalent organic frameworks
    Wang, Rui-Ning
    Zhang, Xin-Ran
    Wang, Shu-Fang
    Fu, Guang-Sheng
    Wang, Jiang-Long
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (02) : 1258 - 1264
  • [42] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Ge, Yanqing
    Zhang, Wei
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (04) : 926 - 927
  • [43] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Yanqing Ge
    Wei Zhang
    Science China(Chemistry), 2023, (04) : 926 - 927
  • [44] 2D Covalent Organic Frameworks with Kagome Lattice: Synthesis and Applications
    Tu, Jing
    Song, Wen
    Chen, Bo
    Li, Yusen
    Chen, Long
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (66)
  • [45] Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction
    Yang, Zongfan
    Chen, Pei
    Hao, Wenjing
    Xie, Zhen
    Feng, Yu
    Xing, Guolong
    Chen, Long
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (11) : 3817 - 3822
  • [46] 2D Covalent Organic Frameworks with Alternating Triangular and Hexagonal Pores
    Baldwin, Luke A.
    Crowe, Jonathan W.
    Shannon, Matthew D.
    Jaroniec, Christopher P.
    McGrier, Psaras L.
    CHEMISTRY OF MATERIALS, 2015, 27 (18) : 6169 - 6172
  • [47] Supramolecular design principles for the synthesis of 2D covalent organic frameworks
    Smaldone, Ronald
    Occhialini, Gino
    Thompson, Christina
    Nielsen, Steve
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [48] Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks
    Garberoglio, G.
    Vallauri, R.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2008, 116 (1-3) : 540 - 547
  • [49] Understanding charge transport in wavy 2D covalent organic frameworks
    Martinez-Abadia, Marta
    Strutynski, Karol
    Stoppiello, Craig T.
    Berlanga, Belen Lerma
    Marti-Gastaldo, Carlos
    Khlobystov, Andrei N.
    Saeki, Akinori
    Melle-Franco, Manuel
    Mateo-Alonso, Aurelio
    NANOSCALE, 2021, 13 (14) : 6829 - 6833
  • [50] Reticular Growth of Graphene Nanoribbon 2D Covalent Organic Frameworks
    Veber, Gregory
    Diercks, Christian S.
    Rogers, Cameron
    Perkins, Wade S.
    Ciston, Jim
    Lee, Kyunghoon
    Llinas, Juan Pablo
    Liebman-Pelaez, Alex
    Zhu, Chenhui
    Bokor, Jeffrey
    Fischer, Felix R.
    CHEM, 2020, 6 (05): : 1125 - 1133