Sign-Changing Solutions for Fractional Kirchhoff-Type Equations with Critical and Supercritical Nonlinearities

被引:0
作者
Gao, Liu [1 ]
Chen, Chunfang [1 ]
Chen, Jianhua [1 ]
Zhu, Chuanxi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Sign-changing solutions; Kirchhoff equations; supercritical growth; truncation arguments; Moser iteration method;
D O I
10.1007/s00009-021-01733-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the existence of sign-changing solutions for the following fractional Kirchhoff-type equation with critical and supercritical nonlinearities (a + b[u](2)) (-Delta)(alpha) u + V(x)u = f(x, u) + lambda vertical bar u vertical bar(r-2) u, in R-3, where a, b > 0 are constants, alpha is an element of (3/4, 1), lambda > 0 is a real parameter, r >= 2(alpha)* = 6/3-2 alpha, (-Delta)(alpha) is the fractional Laplace operator, the potential function V and the nonlinearity f satisfy some suitable conditions. By combining an appropriate truncation argument with Moser iteration method, we prove that the existence of sign-changing solutions for the above equation when the parameter lambda is sufficiently small. Our results enrich and improve the previous ones in the literature.
引用
收藏
页数:19
相关论文
共 42 条
[1]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[2]   SUPERCRITICAL FRACTIONAL KIRCHHOFF TYPE PROBLEMS [J].
Ambrosio, Vincenzo ;
Servadei, Raffaella .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) :1351-1377
[3]  
Ambrosio V, 2018, RIV MAT UNIV PARMA, V9, P53
[4]   Concentration phenomena for a fractional Schrodinger-Kirchhoff type equation [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) :615-645
[5]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[6]   A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
[7]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[8]  
Bernstein S., 1983, Bull. Acad. Sci. URSS. Sr. Math, V4, P17
[9]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260