Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media

被引:70
作者
Strickler, Alaina L. [1 ]
Flores, Raul A. [1 ]
King, Laurie A. [1 ]
Norskov, Jens K. [1 ,2 ,3 ]
Bajdich, Michal [2 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
oxygen evolution reaction; electrocatalysis; acidic media; Cr doping; volcano plot; theoretical overpotential; electrochemical characterization; density functional theory; ELECTRONIC-STRUCTURE; WATER OXIDATION; EFFICIENT; ELECTROCATALYSTS; REDUCTION; PARTICLES; PLATINUM; ORIGIN;
D O I
10.1021/acsami.9b13697
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multimetallic Ir-based systems offer significant opportunities for enhanced oxygen evolution electrocatalysis by modifying the electronic and geometric properties of the active catalyst. Herein, a systematic investigation of bimetallic Ir-based thin films was performed to identify activity and stability trends across material systems for the oxygen evolution reaction (OER) in acidic media. Electron beam evaporation was used to co-deposit metallic films of Ir, IrSn2, IrCr, IrTi, and IrNi. The electrocatalytic activity of the electrochemically oxidized alloys was found to increase in the following order: IrTi < IrSn2 < Ir similar to IrNi < IrCr. The IrCr system demonstrates two times the catalytic activity of Ir at 1.65 V versus RHE. Density functional theory calculations suggest that this enhancement is due to Cr active sites that have improved oxygen binding energetics compared to those of pure Ir oxide. This work identifies IrCr as a promising new catalyst system that facilitates reduced precious metal loadings for acid-based OER catalysis.
引用
收藏
页码:34059 / 34066
页数:8
相关论文
共 61 条
[1]   Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts [J].
Alia, Shaun M. ;
Shulda, Sarah ;
Ngo, Chilan ;
Pylypenko, Svitlana ;
Pivovar, Bryan S. .
ACS CATALYSIS, 2018, 8 (03) :2111-+
[2]   Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas [J].
Alia, Shaun M. ;
Hurst, Katherine E. ;
Kocha, Shyam S. ;
Pivovar, Bryan S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3051-F3056
[3]   A STUDY OF A NUMBER OF MIXED TRANSITION-METAL OXIDE SPINELS USING X-RAY PHOTOELECTRON-SPECTROSCOPY [J].
ALLEN, GC ;
HARRIS, SJ ;
JUTSON, JA ;
DYKE, JM .
APPLIED SURFACE SCIENCE, 1989, 37 (01) :111-134
[4]  
Ayers K. E, 2011, ECS T, V41, P15
[5]   Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].
Bajdich, Michal ;
Garcia-Mota, Monica ;
Vojvodic, Aleksandra ;
Norskov, Jens K. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13521-13530
[6]   A CORE-LEVEL PHOTOEMISSION SPECTROSCOPY STUDY OF THE FORMATION OF SURFACE ALLOY CU/PT(111) - COMPARISON WITH PT/CU(111) [J].
BARRETT, NT ;
BELKHOU, R ;
THIELE, J ;
GUILLOT, C .
SURFACE SCIENCE, 1995, 331 :776-781
[7]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[8]   Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes [J].
Chen, GH ;
Chen, XM ;
Yue, PL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (17) :4364-4369
[9]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[10]   Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability [J].
Cherevko, Serhiy ;
Geiger, Simon ;
Kasian, Olga ;
Kulyk, Nadiia ;
Grote, Jan-Philipp ;
Savan, Alan ;
Shrestha, Buddha Ratna ;
Merzlikin, Sergiy ;
Breitbach, Benjamin ;
Ludwig, Alfred ;
Mayrhofer, Karl J. J. .
CATALYSIS TODAY, 2016, 262 :170-180