Spectral singularities of Klein-Gordon s-wave equations with an integral boundary condition

被引:22
作者
Bairamov, E [1 ]
Karaman, Ö [1 ]
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
spectral singularities; Klein-Gordon equations; eigenvalue problems;
D O I
10.1023/A:1020815113773
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate spectral singularities and eigenvalues of the boundary value problem y" + [lambda - Q(x)](2) y = 0, x is an element of R+ = [0, infinity), (0)integral(infinity) K(x)y(x)dx + alphay'(0) - betay(0) = 0, where Q and K are complex valued functions, K is an element of L-2 (R+), alpha, beta is an element of C with \alpha\ + \beta\ not equal 0 and lambda is a spectral parameter.
引用
收藏
页码:121 / 131
页数:11
相关论文
共 23 条
[1]  
[Anonymous], 1967, AM MATH SOC T SERIES
[2]  
[Anonymous], 1967, AM MATH SOC T SERIES
[3]  
Bairamov E, 1997, INDIAN J PURE AP MAT, V28, P813
[4]   Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators [J].
Bairamov, E ;
Çelebi, AO .
QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200) :371-384
[5]   Quadratic pencil of Schrodinger operators with spectral singularities: Discrete spectrum and principal functions [J].
Bairamov, E ;
Cakar, O ;
Celebi, AO .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (01) :303-320
[6]   An eigenfunction expansion for a quadratic pencil of a Schrodinger operator with spectral singularities [J].
Bairamov, E ;
Çakar, Ö ;
Krall, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :268-289
[7]  
DOLZHENKO EP, 1979, MATH NOTES, V26, P437
[8]  
GASYMOV MG, 1965, SOV MATH DOKL, V6, P1426
[9]  
GASYMOV MG, 1972, FUNCT ANAL APPL, V6, P185
[10]  
Greiner W., 1994, QUANTUM CHROMODYNAMI