Using Legendre spectral element method with Quasi-linearization method for solving Bratu's problem

被引:0
作者
Lotfi, Mahmoud [1 ]
Alipanah, Amjad [1 ]
机构
[1] Univ Kurdistan, Dept Appl Math, Sanandaj, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2019年 / 7卷 / 04期
关键词
Bratu's problem; Quasi-linearization; Spectral element method; Legendre polynomials; SCHEMES; EQUATIONS; FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presented here is the solution of the one-dimensional Bratus problem. The nonlinear Bratus problem is first linearised using the quasi-linearization method and then solved by the spectral element method. We use the Legendre polynomials for interpolation. Finally we show the results with a numerical example.
引用
收藏
页码:580 / 588
页数:9
相关论文
共 35 条
[1]   The Lie-group shooting method for solving the Bratu equation [J].
Abbasbandy, S. ;
Hashemi, M. S. ;
Liu, Chein-Shan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) :4238-4249
[2]  
Adesanya S., 2013, Math. Meth. Model, V3, P116
[3]  
Ai Q., 2018, APPL NUMER MATH
[4]  
[Anonymous], 1996, SPECTRAL ELEMENT MET
[5]  
Bathe KJ., 1995, FINITE ELEMENT PROCE
[6]  
Bellman R. E., 1965, Quasilinearization and nonlinear boundary value problems
[7]  
Boyd J. P., 1986, Journal of Scientific Computing, V1, P183, DOI 10.1007/BF01061392
[8]  
Bratu G., 1914, Bulletin de la Socit Mathmatique de France, V42, P113, DOI [10.24033/bsmf.943, DOI 10.24033/BSMF.943]
[9]   Investigations of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates [J].
Buckmire, R .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :380-398
[10]   Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations [J].
Chen, Yanping ;
Yi, Nianyu ;
Liu, Wenbin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2254-2275