Topological analysis of shapes using Morse theory

被引:10
作者
Allili, M. [1 ]
Corriveau, D.
机构
[1] Bishops Univ, Dept Comp Sci, Lennoxville, PQ J1M 1Z7, Canada
[2] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
shape representation; shape similarity; Morse theory; computational homology;
D O I
10.1016/j.cviu.2006.10.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel method for shape analysis that is suitable for any multi-dimensional data set that can be modelled as a manifold. The descriptor is obtained for any pair (M, phi), where M is a closed smooth manifold and phi is a Morse function defined on M. More precisely, we characterize the topology of all pairs of sub-level sets (M-y, M-x) of phi, where M-a = phi(-1)((-infinity, a]), for all a is an element of R. Classical Morse theory is used to establish a link between the topology of a pair of sub-level sets of p and its critical points lying between the two levels. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 199
页数:12
相关论文
共 15 条
[1]  
Allili M, 2001, 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, P173, DOI 10.1109/ICIP.2001.958452
[2]  
ALLILI M, 2003, P ICISP 2003, V2, P508
[3]  
[Anonymous], 1994, ALGEBRAIC TOPOLOGY
[4]  
Bimbo A., 1999, VISUAL INFORM RETRIE
[5]  
CAGLIARI F, 2001, PRESENTATIONS MORSE
[6]  
Frosini P, 1996, MATH METHOD APPL SCI, V19, P555, DOI 10.1002/(SICI)1099-1476(19960510)19:7<555::AID-MMA787>3.0.CO
[7]  
2-X
[8]  
Greenberg M. J., 1981, ALGEBRAIC TOPOLOGY 1
[9]  
KACZYNSKI K, 2004, COMPUTATIONAL HOMOLO, V157
[10]  
MATSUMOTO Y, 2002, T MATH MONOGRAPHS, V208