Regularity results for stable-like operators

被引:56
作者
Bass, Richard F. [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Semigroups; Holder; Stable-like; Non-local; SYMMETRIC JUMP-PROCESSES; HARNACK INEQUALITIES; HARMONIC-FUNCTIONS; MARKOV-PROCESSES; VARIABLE ORDER; KERNEL;
D O I
10.1016/j.jfa.2009.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For alpha is an element of [1, 2) we consider operators of the form Lf (x) = (Rd)integral[f (x + h) - f (x)- 1((|h|<= 1))del f (x) . h]A(x, h)/|h|(d+a) dh and for alpha is an element of (0, 1) we consider the same operator but where the del f term is omitted. We prove, under appropriate conditions on A(x, h), that any solution u to Lu = f will be in C(alpha+beta) if f is an element of C(beta). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2693 / 2722
页数:30
相关论文
共 26 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[3]   Holder continuity of harmonic functions with respect to operators of variable order [J].
Bass, RF ;
Kassmann, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (08) :1249-1259
[4]   UNIQUENESS IN LAW FOR PURE JUMP MARKOV-PROCESSES [J].
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (02) :271-287
[5]   Harnack inequalities for non-local operators of variable order [J].
Bass, RF ;
Kassmann, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) :837-850
[6]   Harnack inequalities for jump processes [J].
Bass, RF ;
Levin, DA .
POTENTIAL ANALYSIS, 2002, 17 (04) :375-388
[7]   Transition probabilities for symmetric jump processes [J].
Bass, RF ;
Levin, DA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2933-2953
[8]  
BASS RF, ANN I H POI IN PRESS
[9]  
BASS RF, 2009, STOCHASTIC PROCESS A, V49, P1144
[10]   Harnack's inequality for stable Levy processes [J].
Bogdan, K ;
Sztonyk, P .
POTENTIAL ANALYSIS, 2005, 22 (02) :133-150