INEQUALITIES FOR THE ANGULAR DERIVATIVES OF CERTAIN CLASSES OF HOLOMORPHIC FUNCTIONS IN THE UNIT DISC

被引:1
作者
Ornek, Bulent Nafi [1 ]
机构
[1] Amasya Univ, Dept Comp Engn, TR-05100 Merkez Amasya, Turkey
关键词
Schwarz lemma on the boundary; holomorphic function; angular derivative; Julia-Wolff-Lemma; SCHWARZ INEQUALITY;
D O I
10.4134/BKMS.2016.53.2.325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a boundary version of the Schwarz lemma is investigated. We take into consideration a function f (z) - z+c(p+1)z(p+1)+c(p+2)z(p+2)+... holomorphic in the unit disc and vertical bar f (z)/lambda f(z)+(1-lambda)z - alpha vertical bar < alpha for vertical bar z vertical bar < 1, where 1/2 < alpha <= 1/1+lambda, 0 <= lambda < 1. If we know the second and the third coefficient in the expansion of the function f (z) = z + c(p+1)z(p+1) + c(p+2) z(p+2) +...., then we can obtain more general results on the angular derivatives of certain holomorphic function on the unit disc at boundary by taking into account c(p+1), c(p+2) and zeros of f(z)-z. We obtain a sharp lower bound of vertical bar f '(b)vertical bar at the point b, where vertical bar b vertical bar = 1.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[2]   A refined Schwarz inequality on the boundary [J].
Azeroglu, T. Aliyev ;
Ornek, B. N. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (04) :571-577
[3]  
Dubinin V. N., 2004, J. Math. Sci., V122, P3623
[4]   Bounded holomorphic functions covering no concentric circles [J].
Dubinin V.N. .
Journal of Mathematical Sciences, 2015, 207 (6) :825-831
[5]  
Golusin GM., 1966, GEOMETRIC THEORY FUN
[6]   THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT [J].
Jeong, Moonja .
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (03) :219-227
[7]   SHARPENED FORMS OF THE SCHWARZ LEMMA ON THE BOUNDARY [J].
Ornek, Bulent Nafi .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) :2053-2059
[8]   A sharp Schwarz inequality on the boundary [J].
Osserman, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) :3513-3517
[9]   Concerning the marginal distortion with conforming figures [J].
Unkelbach, H .
MATHEMATISCHE ZEITSCHRIFT, 1938, 43 :739-742