Dynamic Multiparty Quantum Secret Sharing With a Trusted Party Based on Generalized GHZ State

被引:23
作者
Zhou, Ri-Gui [1 ,2 ]
Huo, Mingyu [1 ,2 ]
Hu, Wenwen [1 ,2 ]
Zhao, Yishi [1 ,2 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[2] Res Ctr Intelligent Informat Proc & Quantum Intel, Shanghai 201306, Peoples R China
关键词
Cryptography; Particle measurements; Protocols; Atmospheric measurements; Quantum state; Licenses; Volume measurement; Generalized GHZ state; multiparty to multiparty; quantum cryptography; KEY DISTRIBUTION;
D O I
10.1109/ACCESS.2021.3055943
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a dynamic multiparty to multiparty quantum secret sharing scheme, where two distant groups of participants can share the common secrets. In our present scheme, a trusted third party is required to reliably prepare all quantum resources. Each agent only needs to perform the local unitary operations or single-particle measurement completing the process of secret sharing. Secret can be recovered only if all agents cooperate each other. Furthermore, a new agent can be added or deleted from the current scheme with the help of the trusted third party. Finally, security analysis shows that our scheme can resist various common attacks. Compared to former existing researches, our scheme can be more efficient in real application.
引用
收藏
页码:22986 / 22995
页数:10
相关论文
共 43 条
[1]   Boosting the secret key rate in a shared quantum and classical fibre communication system [J].
Bacco, Davide ;
Da Lio, Beatrice ;
Cozzolino, Daniele ;
Da Ros, Francesco ;
Guo, Xueshi ;
Ding, Yunhong ;
Sasaki, Yusuke ;
Aikawa, Kazuhiko ;
Miki, Shigehito ;
Terai, Hirotaka ;
Yamashita, Taro ;
Neergaard-Nielsen, Jonas S. ;
Galili, Michael ;
Rottwitt, Karsten ;
Andersen, Ulrik L. ;
Morioka, Toshio ;
Oxenlowe, Leif K. .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[4]  
Blakley GR, 1979, P AFIPS NEW YORK NY, P313, DOI DOI 10.1109/MARK.1979.8817296
[5]   Deterministic secure direct communication using entanglement -: art. no. 187902 [J].
Boström, K ;
Felbinger, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :187902/1-187902/4
[6]   Quantum key distribution in the Holevo limit [J].
Cabello, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5635-5638
[7]   How to share a quantum secret [J].
Cleve, R ;
Gottesman, D ;
Lo, HK .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :648-651
[8]   Secure direct communication with a quantum one-time pad [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2004, 69 (05) :052319-1
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]  
Feng Zhi-hong, 2015, Application Research of Computers, V32, P873, DOI 10.3969/j.issn.1001-3695.2015.03.053