Fractional chiral hinge insulator

被引:14
作者
Hackenbroich, Anna [1 ,2 ]
Hudomal, Ana [3 ,4 ]
Schuch, Norbert [1 ,2 ,5 ,6 ]
Bernevig, B. Andrei [7 ]
Regnault, Nicolas [7 ,8 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80779 Munich, Germany
[3] Univ Belgrade, Inst Phys Belgrade, Belgrade 11080, Serbia
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[5] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[6] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[7] Princeton Univ, Joseph Henry Labs & Dept Phys, Princeton, NJ 08544 USA
[8] Univ Paris Diderot, Sorbonne Univ, Univ PSL, Lab Phys,CNRS,ENS,Sorbonne Paris Cite, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
D O I
10.1103/PhysRevB.103.L161110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge insulator (FCHI) constructed by Gutzwiller projection of two noninteracting second-order topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize the model states via the entanglement entropy and charge-spin fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized by a central charge c = 1 and Luttinger parameter K = 1/2, like the edge modes of a Laughlin 1/2 state. The bulk and surface topology is characterized by the topological entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host an unconventional two-dimensional topological phase. In a clear departure from the physics of a Laughlin 1/2 state, we find a TEE per surface compatible with (In root 2)/2, half that of a Laughlin 1/2 state. This value cannot be obtained from topological quantum field theory for purely two-dimensional systems. For the sake of completeness, we also investigate the topological degeneracy.
引用
收藏
页数:6
相关论文
共 61 条
  • [1] Multiregion entanglement in locally scrambled quantum dynamics
    Akhtar, A. A.
    You, Yi-Zhuang
    [J]. PHYSICAL REVIEW B, 2020, 102 (13)
  • [2] Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators
    Benalcazar, Wladimir A.
    Bernevig, B. Andrei
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2017, 96 (24)
  • [3] Quantized electric multipole insulators
    Benalcazar, Wladimir A.
    Bernevig, B. Andrei
    Hughes, Taylor L.
    [J]. SCIENCE, 2017, 357 (6346) : 61 - 66
  • [4] Entanglement entropy and conformal field theory
    Calabrese, Pasquale
    Cardy, John
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
  • [5] Topological order in a three-dimensional toric code at finite temperature
    Castelnovo, Claudio
    Chamon, Claudio
    [J]. PHYSICAL REVIEW B, 2008, 78 (15)
  • [6] Microscopic study of the Halperin-Laughlin interface through matrix product states
    Crepel, V
    Claussen, N.
    Regnault, N.
    Estienne, B.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Model states for a class of chiral topological order interfaces
    Crepel, V
    Claussen, N.
    Estienne, B.
    Regnault, N.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] Higher-order bosonic topological phases in spin models
    Dubinkin, Oleg
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2019, 99 (23)
  • [9] Corner states of light in photonic waveguides
    El Hassan, Ashraf
    Kunst, Flore K.
    Moritz, Alexander
    Andler, Guillermo
    Bergholtz, Emil J.
    Bourennane, Mohamed
    [J]. NATURE PHOTONICS, 2019, 13 (10) : 697 - +
  • [10] Entanglement spectroscopy of chiral edge modes in the quantum Hall effect
    Estienne, Benoit
    Stephan, Jean-Marie
    [J]. PHYSICAL REVIEW B, 2020, 101 (11)