共 61 条
Fractional chiral hinge insulator
被引:14
作者:
Hackenbroich, Anna
[1
,2
]
Hudomal, Ana
[3
,4
]
Schuch, Norbert
[1
,2
,5
,6
]
Bernevig, B. Andrei
[7
]
Regnault, Nicolas
[7
,8
]
机构:
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80779 Munich, Germany
[3] Univ Belgrade, Inst Phys Belgrade, Belgrade 11080, Serbia
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[5] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[6] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[7] Princeton Univ, Joseph Henry Labs & Dept Phys, Princeton, NJ 08544 USA
[8] Univ Paris Diderot, Sorbonne Univ, Univ PSL, Lab Phys,CNRS,ENS,Sorbonne Paris Cite, F-75005 Paris, France
基金:
欧洲研究理事会;
关键词:
D O I:
10.1103/PhysRevB.103.L161110
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge insulator (FCHI) constructed by Gutzwiller projection of two noninteracting second-order topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize the model states via the entanglement entropy and charge-spin fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized by a central charge c = 1 and Luttinger parameter K = 1/2, like the edge modes of a Laughlin 1/2 state. The bulk and surface topology is characterized by the topological entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host an unconventional two-dimensional topological phase. In a clear departure from the physics of a Laughlin 1/2 state, we find a TEE per surface compatible with (In root 2)/2, half that of a Laughlin 1/2 state. This value cannot be obtained from topological quantum field theory for purely two-dimensional systems. For the sake of completeness, we also investigate the topological degeneracy.
引用
收藏
页数:6
相关论文