A Sylvester-Arnoldi type method for the generalized eigenvalue problem with two-by-two operator determinants

被引:11
作者
Meerbergen, Karl [1 ]
Plestenjak, Bor [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Leuven, Belgium
[2] Univ Ljubljana, IMFM, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Dept Math, SI-1000 Ljubljana, Slovenia
关键词
generalized eigenvalue problem; Sylvester equation; Bartels-Stewart algorithm; inverse iteration; subspace iteration; Arnoldi method; two-parameter eigenvalue problem; Mathieu's system; Hopf bifurcation; low-rank approximation;
D O I
10.1002/nla.2005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In various applications, for instance, in the detection of a Hopf bifurcation or in solving separable boundary value problems using the two-parameter eigenvalue problem, one has to solve a generalized eigenvalue problem with 2 x 2 operator determinants of the form (B-1 circle times A(2) - A(1) circle times B-2)z = mu B-1 circle times C-2 - C-1 circle times B-2)z. We present efficient methods that can be used to compute a small subset of the eigenvalues. For full matrices of moderate size, we propose either the standard implicitly restarted Arnoldi or Krylov-Schur iteration with shift-and-invert transformation, performed efficiently by solving a Sylvester equation. For large problems, it is more efficient to use subspace iteration based on low-rank approximations of the solution of the Sylvester equation combined with a Krylov-Schur method for the projected problems. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1131 / 1146
页数:16
相关论文
共 22 条
  • [1] Atkinson F.V, 1972, Multiparameter Eigenvalue Problems
  • [2] ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C
    BARTELS, RH
    STEWART, GW
    [J]. COMMUNICATIONS OF THE ACM, 1972, 15 (09) : 820 - &
  • [3] AN ERROR ANALYSIS FOR RATIONAL GALERKIN PROJECTION APPLIED TO THE SYLVESTER EQUATION
    Beckermann, Bernhard
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2430 - 2450
  • [4] Convergence of inexact inverse iteration with application to preconditioned iterative solves
    Freitag, M. A.
    Spence, A.
    [J]. BIT NUMERICAL MATHEMATICS, 2007, 47 (01) : 27 - 44
  • [5] Spectral collocation solutions to multiparameter Mathieu's system
    Gheorghiu, C. I.
    Hochstenbach, M. E.
    Plestenjak, B.
    Rommes, J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11990 - 12000
  • [6] Jacobi-Davidson type method for the two-parameter eigenvalue problem
    Hochstenbach, ME
    Kosir, T
    Plestenjak, B
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 477 - 497
  • [7] Hochstenbach ME, 2007, ELECTRON T NUMER ANA, V29, P81
  • [8] KRYLOV-SUBSPACE METHODS FOR THE SYLVESTER EQUATION
    HU, DY
    REICHEL, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 172 : 283 - 313
  • [9] Forward and inverse parameter estimation algorithms of interdigital dielectrometry sensors
    Lesieutre, BC
    Mamishev, AV
    Du, Y
    Keskiner, E
    Zahn, M
    Verghese, GC
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2001, 8 (04) : 577 - 588
  • [10] Meerbergen K, 2000, TEMPLATES SOLUTION A, P339