Quantitative Detection of Settled Dust Over Green Canopy Using Sparse Unmixing of Airborne Hyperspectral Data

被引:29
作者
Brook, Anna [1 ]
Ben Dor, Eyal [2 ]
机构
[1] Univ Haifa, Remote Sensing Lab, Ctr Spatial Anal Res UHCSISR, Dept Social Sci, IL-3498838 Har Hakarmel, Israel
[2] Tel Aviv Univ, Remote Sensing Lab, Dept Geog & Human Environm, IL-69978 Ramat Aviv, Israel
关键词
Alternating least-square (ALS); classification; graph regularized NMF (G_NMF); feature-extraction; HU; Lin's projected gradient (LPG); L-1 sparsity-constrained NMF (L-1_NMF); L-1/2 sparsity-constrained NMF (L-1/2_NMF); sparse modeling; structured sparse NMF (SS_NMF); NONNEGATIVE MATRIX FACTORIZATION; IMAGING SPECTROMETRY; BURN SEVERITY; POLLUTANTS; REGRESSION; ALGORITHM; TRANSPORT; MIXTURE;
D O I
10.1109/JSTARS.2015.2489207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The main task of environmental and geoscience applications is efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing hyperspectral unmixing (HU) to retrieve accurate quantitative information latent in hyperspectral imagery data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem of hyperspectral imagery in semisupervised fashion. This paper suggests that the sensitivity of sparse unmixing techniques provides an ideal approach to extract and identify dust settled over/upon green vegetation canopy using hyperspectral airborne data. Among the available techniques, this study presents the results of seven selected algorithms: 1) non-negative matrix factorization (NMF); 2) L-1 sparsity-constrained NMF (L-1_NMF); 3) L-1/2 sparsity-constrained NMF (L-1/2_NMF); 4) graph regularized NMF (G_NMF); 5) structured sparse NMF (SS_NMF); 6) alternating least-square (ALS); and 7) Lin's projected gradient (LPG). The performance is evaluated on real hyperspectral imagery data via detailed experimental assessment. The results compared with performances of selected conventional unmixing techniques.
引用
收藏
页码:884 / 897
页数:14
相关论文
共 61 条
[1]  
ADAMS JB, 1986, J GEOPHYS RES-SOLID, V91, P8098, DOI 10.1029/JB091iB08p08098
[2]   Imaging spectrometry for soil applications [J].
Ben-Dor, E. ;
Taylor, R. G. ;
Hill, J. ;
Dematte, J. A. M. ;
Whiting, M. L. ;
Chabrillat, S. ;
Sommer, S. .
ADVANCES IN AGRONOMY, VOL 97, 2008, 97 :321-+
[3]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[4]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[5]  
Brook A., 2014, P 6 WORKSH HYP IM SI, P4
[6]   Supervised vicarious calibration (SVC) of hyperspectral remote-sensing data [J].
Brook, Anna ;
Ben Dor, Eyal .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (06) :1543-1555
[7]   Graph Regularized Nonnegative Matrix Factorization for Data Representation [J].
Cai, Deng ;
He, Xiaofei ;
Han, Jiawei ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1548-1560
[8]   Robust support vector method for hyperspectral data classification and knowledge discovery [J].
Camps-Valls, G ;
Gómez-Chova, L ;
Calpe-Maravilla, J ;
Martín-Guerrero, JD ;
Soria-Olivas, E ;
Alonso-Chordá, L ;
Moreno, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (07) :1530-1542
[9]   Long noncoding RNA profiles identify five distinct molecular subtypes of colorectal cancer with clinical relevance [J].
Chen, Haoyan ;
Xu, Jie ;
Hong, Jie ;
Tang, Ruqi ;
Zhang, Xi ;
Fang, Jing-Yuan .
MOLECULAR ONCOLOGY, 2014, 8 (08) :1393-1403
[10]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985