Orlicz-Pettis Theorem through Summability Methods

被引:6
作者
Leon-Saavedra, Fernando [1 ]
Romero de la Rosa, Maria del Pilar [2 ]
Sala, Antonio [3 ]
机构
[1] Univ Cadiz, Dept Math, Fac Ciencias Sociales & Comunicac, Cadiz 11405, Spain
[2] Univ Cadiz, Dept Math, Cadiz 11510, Spain
[3] Univ Cadiz, Dept Matemat, Escuela Super Ingn, Cadiz 11510, Spain
关键词
summability method; ideal convergence; weakly unconditional Cauchy series; Orlicz-Pettis theorem; CAUCHY; SERIES;
D O I
10.3390/math7100895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper unifies several versions of the Orlicz-Pettis theorem that incorporate summability methods. We show that a series is unconditionally convergent if and only if the series is weakly subseries convergent with respect to a regular linear summability method. This includes results using matrix summability, statistical convergence with respect to an ideal, and other variations of summability methods.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Unconditionally Cauchy series and Cesaro summability [J].
Aizpuru, A. ;
Gutierrez-Davila, A. ;
Sala, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :39-48
[2]   DENSITY BY MODULI AND STATISTICAL CONVERGENCE [J].
Aizpuru, A. ;
Listan-Garcia, M. C. ;
Rambla-Barreno, F. .
QUAESTIONES MATHEMATICAE, 2014, 37 (04) :525-530
[3]   A remark about the statistical CesA ro summability and the Orlicz-Pettis theorem [J].
Aizpuru, A. ;
Nicasio-Llach, M. ;
Sala, A. .
ACTA MATHEMATICA HUNGARICA, 2010, 126 (1-2) :94-98
[4]   A remark about the Orlicz-Pettis theorem and the statistical convergence [J].
Aizpuru, A. ;
Nicasio-Llach, M. ;
Rambla-Barreno, F. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (02) :305-310
[5]   MATRIX SUMMABILITY METHODS AND WEAKLY UNCONDITIONALLY CAUCHY SERIES [J].
Aizpuru, A. ;
Perez-Eslava, C. ;
Seoane-Sepulveda, J. B. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (02) :367-380
[6]   On Cesaro summability of vector valued multiplier spaces and operator valued series [J].
Altay, Bilal ;
Kama, Ramazan .
POSITIVITY, 2018, 22 (02) :575-586
[7]   Extension of Pettis integration: Pettis operators and their integrals [J].
Blasco, Oscar ;
Drewnowski, Lech .
COLLECTANEA MATHEMATICA, 2019, 70 (02) :267-281
[8]  
Boos J., 2000, OXFORD MATH MONOGRAP, pxiv+586
[9]   A version of Orlicz-Pettis Theorem for quasi-homogeneous operator space [J].
Chen, Aihong ;
Li, Ronglu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :127-133
[10]  
Connor J. S., 1988, ANALYSIS, V8, P47