Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study

被引:393
作者
Liu, Zhenyu [1 ,2 ]
Li, Zhuolin [3 ]
Qu, Jinrong [4 ]
Zhang, Renzhi [5 ,6 ]
Zhou, Xuezhi [1 ,7 ]
Li, Longfei [1 ,8 ]
Sun, Kai [1 ,7 ]
Tang, Zhenchao [1 ]
Jiang, Hui [4 ]
Li, Hailiang [4 ]
Xiong, Qianqian [9 ,10 ]
Ding, Yingying [3 ]
Zhao, Xinming [5 ,6 ]
Wang, Kun [9 ,10 ]
Liu, Zaiyi [10 ,11 ]
Tian, Jie [1 ,2 ,7 ,12 ]
机构
[1] Inst Automat, CAS Key Lab Mol Imaging, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Kunming Med Univ, Yunnan Canc Hosp, Affiliated Hosp 3, Dept Radiol, Kunming, Yunnan, Peoples R China
[4] Zhengzhou Univ, Henan Canc Hosp, Affiliated Canc Hosp, Dept Radiol, Zhengzhou, Henan, Peoples R China
[5] Chinese Acad Med Sci, Natl Clin Res Ctr Canc, Canc Hosp, Dept Diagnost Radiol,Natl Canc Ctr, Beijing, Peoples R China
[6] Peking Union Med Coll, Beijing, Peoples R China
[7] Xidian Univ, Sch Life Sci & Technol, Minist Educ, Engn Res Ctr Mol & Neuro Imaging, Xian, Shaanxi, Peoples R China
[8] Zhengzhou Univ, Collaborat Innovat Ctr Internet Healthcare, Zhengzhou, Henan, Peoples R China
[9] Guangdong Prov Peoples Hosp, Dept Breast Canc, Guangzhou, Guangdong, Peoples R China
[10] Guangdong Acad Med Sci, Guangzhou 510080, Guangdong, Peoples R China
[11] Guangdong Prov Peoples Hosp, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[12] Beihang Univ, Sch Med, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
DIAGNOSIS; IMAGES; PET/CT;
D O I
10.1158/1078-0432.CCR-18-3190
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: We evaluated the performance of the newly proposed radiomics of multiparametric MRI (RMM), developed and validated based on a multicenter dataset adopting a radiomic strategy, for pretreatment prediction of pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Experimental Design: A total of 586 potentially eligible patients were retrospectively enrolled from four hospitals (primary cohort and external validation cohort 1-3). Quantitative imaging features were extracted from T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging before NAC for each patient. With features selected using a coarse to fine feature selection strategy, four radiomic signatures were constructed based on each of the three MRI sequences and their combination. RMM was developed based on the best radiomic signature incorporating with independent clinicopathologic risk factors. The performance of RMM was assessed with respect to its discrimination and clinical usefulness, and compared with that of clinical information-based prediction model. Results: Radiomic signature combining multiparametric MRI achieved an AUC of 0.79 (the highest among the four radiomic signatures). The signature further achieved good performances in hormone receptor-positive and HER2-negative group and triple-negative group. RMM yielded an AUC of 0.86, which was significantly higher than that of clinical model in two of the three external validation cohorts. Conclusions: The study suggested a possibility that RMM provided a potential tool to develop a model for predicting pCR to NAC in breast cancer.
引用
收藏
页码:3538 / 3547
页数:10
相关论文
共 43 条
[11]   Role of Imaging in Neoadjuvant Therapy for Breast Cancer [J].
Dialani, Vandana ;
Chadashvili, Tamuna ;
Slanetz, Priscilla J. .
ANNALS OF SURGICAL ONCOLOGY, 2015, 22 (05) :1416-1424
[12]   Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients [J].
Fan, Ming ;
Wu, Guolin ;
Cheng, Hu ;
Zhang, Juan ;
Shao, Guoliang ;
Li, Lihua .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 :140-147
[13]   Revisiting the definition of estrogen receptor positivity in HER2-negative primary breast cancer [J].
Fujii, T. ;
Kogawa, T. ;
Dong, W. ;
Sahin, A. A. ;
Moulder, S. ;
Litton, J. K. ;
Tripathy, D. ;
Iwamoto, T. ;
Hunt, K. K. ;
Pusztai, L. ;
Lim, B. ;
Shen, Y. ;
Ueno, N. T. .
ANNALS OF ONCOLOGY, 2017, 28 (10) :2420-2428
[14]   Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort [J].
Gianni, Luca ;
Eiermann, Wolfgang ;
Semiglazov, Vladimir ;
Manikhas, Alexey ;
Lluch, Ana ;
Tjulandin, Sergey ;
Zambetti, Milvia ;
Vazquez, Federico ;
Byakhow, Mikhail ;
Lichinitser, Mikhail ;
Angel Climent, Miguel ;
Ciruelos, Eva ;
Ojeda, Belen ;
Mansutti, Mauro ;
Bozhok, Alla ;
Baronio, Roberta ;
Feyereislova, Andrea ;
Barton, Claire ;
Valagussa, Pinuccia ;
Baselga, Jose .
LANCET, 2010, 375 (9712) :377-384
[15]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[16]   Breast Cancer, Version 4.2017 Clinical Practice Guidelines in Oncology [J].
Gradishar, William J. ;
Anderson, Benjamin O. ;
Balassanian, Ron ;
Blair, Sarah L. ;
Burstein, Harold J. ;
Cyr, Amy ;
Elias, Anthony D. ;
Farrar, William B. ;
Forero, Andres ;
Giordano, Sharon H. ;
Goetz, Matthew P. ;
Goldstein, Lori J. ;
Isakoff, Steven J. ;
Lyons, Janice ;
Marcom, P. Kelly ;
Mayer, Ingrid A. ;
McCormick, Beryl ;
Moran, Meena S. ;
O'Regan, Ruth M. ;
Patel, Sameer A. ;
Pierce, Lori J. ;
Reed, Elizabeth C. ;
Salerno, Kilian E. ;
Schwartzberg, Lee S. ;
Sitapati, Amy ;
Smith, Karen Lisa ;
Smith, Mary Lou ;
Soliman, Hatem ;
Somlo, George ;
Telli, Melinda L. ;
Ward, John H. ;
Kumar, Rashmi ;
Shead, Dorothy A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (03) :310-320
[17]   MR-based radiomics signature in differentiating ocular adnexal lymphoma from idiopathic orbital inflammation [J].
Guo, Jian ;
Liu, Zhenyu ;
Shen, Chen ;
Li, Zheng ;
Yan, Fei ;
Tian, Jie ;
Xian, Junfang .
EUROPEAN RADIOLOGY, 2018, 28 (09) :3872-3881
[18]   Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer [J].
Huang, Yan-qi ;
Liang, Chang-hong ;
He, Lan ;
Tian, Jie ;
Liang, Cui-shan ;
Chen, Xin ;
Ma, Ze-lan ;
Liu, Zai-yi .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (18) :2157-+
[19]   Feature Selection with the Boruta Package [J].
Kursa, Miron B. ;
Rudnicki, Witold R. .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 36 (11) :1-13
[20]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762