Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study

被引:393
作者
Liu, Zhenyu [1 ,2 ]
Li, Zhuolin [3 ]
Qu, Jinrong [4 ]
Zhang, Renzhi [5 ,6 ]
Zhou, Xuezhi [1 ,7 ]
Li, Longfei [1 ,8 ]
Sun, Kai [1 ,7 ]
Tang, Zhenchao [1 ]
Jiang, Hui [4 ]
Li, Hailiang [4 ]
Xiong, Qianqian [9 ,10 ]
Ding, Yingying [3 ]
Zhao, Xinming [5 ,6 ]
Wang, Kun [9 ,10 ]
Liu, Zaiyi [10 ,11 ]
Tian, Jie [1 ,2 ,7 ,12 ]
机构
[1] Inst Automat, CAS Key Lab Mol Imaging, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Kunming Med Univ, Yunnan Canc Hosp, Affiliated Hosp 3, Dept Radiol, Kunming, Yunnan, Peoples R China
[4] Zhengzhou Univ, Henan Canc Hosp, Affiliated Canc Hosp, Dept Radiol, Zhengzhou, Henan, Peoples R China
[5] Chinese Acad Med Sci, Natl Clin Res Ctr Canc, Canc Hosp, Dept Diagnost Radiol,Natl Canc Ctr, Beijing, Peoples R China
[6] Peking Union Med Coll, Beijing, Peoples R China
[7] Xidian Univ, Sch Life Sci & Technol, Minist Educ, Engn Res Ctr Mol & Neuro Imaging, Xian, Shaanxi, Peoples R China
[8] Zhengzhou Univ, Collaborat Innovat Ctr Internet Healthcare, Zhengzhou, Henan, Peoples R China
[9] Guangdong Prov Peoples Hosp, Dept Breast Canc, Guangzhou, Guangdong, Peoples R China
[10] Guangdong Acad Med Sci, Guangzhou 510080, Guangdong, Peoples R China
[11] Guangdong Prov Peoples Hosp, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[12] Beihang Univ, Sch Med, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
DIAGNOSIS; IMAGES; PET/CT;
D O I
10.1158/1078-0432.CCR-18-3190
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: We evaluated the performance of the newly proposed radiomics of multiparametric MRI (RMM), developed and validated based on a multicenter dataset adopting a radiomic strategy, for pretreatment prediction of pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Experimental Design: A total of 586 potentially eligible patients were retrospectively enrolled from four hospitals (primary cohort and external validation cohort 1-3). Quantitative imaging features were extracted from T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging before NAC for each patient. With features selected using a coarse to fine feature selection strategy, four radiomic signatures were constructed based on each of the three MRI sequences and their combination. RMM was developed based on the best radiomic signature incorporating with independent clinicopathologic risk factors. The performance of RMM was assessed with respect to its discrimination and clinical usefulness, and compared with that of clinical information-based prediction model. Results: Radiomic signature combining multiparametric MRI achieved an AUC of 0.79 (the highest among the four radiomic signatures). The signature further achieved good performances in hormone receptor-positive and HER2-negative group and triple-negative group. RMM yielded an AUC of 0.86, which was significantly higher than that of clinical model in two of the three external validation cohorts. Conclusions: The study suggested a possibility that RMM provided a potential tool to develop a model for predicting pCR to NAC in breast cancer.
引用
收藏
页码:3538 / 3547
页数:10
相关论文
共 43 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials [J].
Alberro, J. A. ;
Ballester, B. ;
Deulofeu, P. ;
Fabregas, R. ;
Fraile, M. ;
Gubern, J. M. ;
Janer, J. ;
Moral, A. ;
de Pablo, J. L. ;
Penalva, G. ;
Puig, P. ;
Ramos, M. ;
Rojo, R. ;
Santesteban, P. ;
Serra, C. ;
Sola, M. ;
Solarnau, L. ;
Solsona, J. ;
Veloso, E. ;
Vidal, S. ;
Abe, O. ;
Abe, R. ;
Enomoto, K. ;
Kikuchi, K. ;
Koyama, H. ;
Masuda, H. ;
Nomura, Y. ;
Ohashi, Y. ;
Sakai, K. ;
Sugimachi, K. ;
Toi, M. ;
Tominaga, T. ;
Uchino, J. ;
Yoshida, M. ;
Coles, C. E. ;
Haybittle, J. L. ;
Moebus, V. ;
Leonard, C. F. ;
Calais, G. ;
Garaud, P. ;
Collett, V. ;
Davies, C. ;
Delmestri, A. ;
Sayer, J. ;
Harvey, V. J. ;
Holdaway, I. M. ;
Kay, R. G. ;
Mason, B. H. ;
Forbe, J. F. ;
Franci, P. A. .
LANCET ONCOLOGY, 2018, 19 (01) :27-39
[4]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[5]   Features from Computerized Texture Analysis of Breast Cancers at Pretreatment MR Imaging Are Associated with Response to Neoadjuvant Chemotherapy [J].
Chamming's, Foucauld ;
Ueno, Yoshiko ;
Ferre, Romuald ;
Kao, Ellen ;
Jannot, Anne-Sophie ;
Chong, Jaron ;
Omeroglu, Atilla ;
Mesurolle, Benoit ;
Reinhold, Caroline ;
Gallix, Benoit .
RADIOLOGY, 2018, 286 (02) :412-420
[6]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1136/bmj.g7594, 10.1016/j.eururo.2014.11.025, 10.7326/M14-0697, 10.1186/s12916-014-0241-z, 10.1002/bjs.9736, 10.7326/M14-0698]
[7]  
Cortazar P, 2019, LANCET, V393, P986
[8]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[9]   Neoadjuvant chemotherapy in breast cancer: more than just downsizing [J].
Derks, Marloes G. M. ;
van de Velde, Cornelis J. H. .
LANCET ONCOLOGY, 2018, 19 (01) :2-3
[10]   Diffusion-weighted MRI in Multicenter Trials of Breast Cancer: A Useful Measure of Tumor Response? [J].
desouza, Nandita M. .
RADIOLOGY, 2018, 289 (03) :628-629